Abstract:
A method for forming self-aligned contacts includes patterning a mask between fin regions of a semiconductor device, etching a cut region through a first dielectric layer between the fin regions down to a substrate and filling the cut region with a first material, which is selectively etchable relative to the first dielectric layer. The first dielectric layer is isotropically etched to reveal source and drain regions in the fin regions to form trenches in the first material where the source and drain regions are accessible. The isotropic etching is super selective to remove the first dielectric layer relative to the first material and relative to gate structures disposed between the source and drain regions. Metal is deposited in the trenches to form silicide contacts to the source and drain regions.
Abstract:
A method for filling gaps between structures includes forming a plurality of high aspect ratio structures adjacent to one another with gaps, forming a first dielectric layer on tops of the structures and conformally depositing a spacer dielectric layer over the structures. The spacer dielectric layer is removed from horizontal surfaces and a protection layer is conformally deposited over the structures. The gaps are filled with a flowable dielectric, which is recessed to a height along sidewalls of the structures by a selective etch process such that the protection layer protects the spacer dielectric layer on sidewalls of the structures. The first dielectric layer and the spacer dielectric layer are exposed above the height using a higher etch resistance than the protection layer to maintain dimensions of the spacer layer dielectric through the etching processes. The gaps are filled by a high density plasma fill.
Abstract:
A method for filling gaps between structures includes forming a plurality of high aspect ratio structures adjacent to one another with gaps, forming a first dielectric layer on tops of the structures and conformally depositing a spacer dielectric layer over the structures. The spacer dielectric layer is removed from horizontal surfaces and a protection layer is conformally deposited over the structures. The gaps are filled with a flowable dielectric, which is recessed to a height along sidewalls of the structures by a selective etch process such that the protection layer protects the spacer dielectric layer on sidewalls of the structures. The first dielectric layer and the spacer dielectric layer are exposed above the height using a higher etch resistance than the protection layer to maintain dimensions of the spacer layer dielectric through the etching processes. The gaps are filled by a high density plasma fill.
Abstract:
A method for filling gaps between structures includes forming a plurality of high aspect ratio structures adjacent to one another with gaps, forming a first dielectric layer on tops of the structures and conformally depositing a spacer dielectric layer over the structures. The spacer dielectric layer is removed from horizontal surfaces and a protection layer is conformally deposited over the structures. The gaps are filled with a flowable dielectric, which is recessed to a height along sidewalls of the structures by a selective etch process such that the protection layer protects the spacer dielectric layer on sidewalls of the structures. The first dielectric layer and the spacer dielectric layer are exposed above the height using a higher etch resistance than the protection layer to maintain dimensions of the spacer layer dielectric through the etching processes. The gaps are filled by a high density plasma fill.
Abstract:
A multi-channel semiconductor device includes a first and second gate channels formed in a semiconductor substrate. The first gate channel has a first length and the second gate channel has a second length greater than the first length. A gate dielectric layer is formed in the first and second gate channels. A first plurality of work function metal layers is formed on the gate dielectric layer of the first gate channel. A second plurality of work function metal layers is formed on the gate dielectric layer of the second gate channel. A barrier layer is formed on each of the first and second plurality of work function metal layers, and the gate dielectric layer. The multi-channel semiconductor device further includes metal gate stacks formed on of the barrier layer such that the barrier layer is interposed between the metal gate stacks and the gate dielectric layer.
Abstract:
Devices and methods for forming semiconductor devices with middle of line capacitance reduction in self-aligned contact process flow and fabrication are provided. One method includes, for instance: obtaining a wafer with at least one source, drain, and gate; forming a first contact region over the at least one source and a second contact region over the at least one drain; and forming at least one first and second small contact over the first and second contact regions. One intermediate semiconductor device includes, for instance: a wafer with a gate, source region, and drain region; at least one first contact region positioned over a portion of the source; at least one second contact region positioned over a portion of the drain; at least one first small contact positioned above the first contact region; and at least one second small contact positioned above the second contact region.
Abstract:
Embodiments of the invention provide approaches for forming gate and source/drain (S/D) contacts. Specifically, the semiconductor device includes a gate transistor formed over a substrate, a S/D contact formed over a trench-silicide (TS) layer and positioned adjacent the gate transistor, and a gate contact formed over the gate transistor, wherein at least a portion of the gate contact is aligned over the TS layer. This structure enables contact with the TS layer, thereby decreasing the distance between the gate contact and the source/drain, which is desirable for ultra-area-scaling.
Abstract:
One method includes forming a recessed gate/spacer structure that partially defines a spacer/gate cap recess, forming a gate cap layer in the spacer/gate cap recess, forming a gate cap protection layer on an upper surface of the gate cap layer, and removing portions of the gate cap protection layer, leaving a portion of the gate cap protection layer positioned on the upper surface of the gate cap layer. A device disclosed herein includes a gate/spacer structure positioned in a layer of insulating material, a gate cap layer positioned on the gate/spacer structure, wherein sidewalls of the gate cap layer contact the layer of insulating material, and a gate cap protection layer positioned on an upper surface of the gate cap layer, wherein the sidewalls of the gate cap protection layer also contact the layer of insulating material.
Abstract:
One method disclosed herein includes forming first and second gate cap protection layers that encapsulate and protect a gate cap layer. A novel transistor device disclosed herein includes a gate structure positioned above a semiconductor substrate, a spacer structure positioned adjacent the gate structure, a layer of insulating material positioned above the substrate and around the spacer structure, a gate cap layer positioned above the gate structure and the spacer structure, and a gate cap protection material that encapsulates the gate cap layer, wherein portions of the gate cap protection material are positioned between the gate cap layer and the gate structure, the spacer structure and the layer of insulating material.
Abstract:
A diode for integration with finFET devices is disclosed. An in-situ doped epitaxial silicon region is grown on the cathode or anode of the diode to increase the surface area of the junction and overall silicon volume for improved heat dissipation during an ESD event.