Abstract:
A semiconductor device package includes a semiconductor chip having bonding pads; a printed circuit board (PCB) including an insulation pattern with a groove and bonding electrodes corresponding to the bonding pads, the groove corresponding to the edge of the semiconductor chip and being formed to partially expose a lower portion of the edge of the semiconductor chip; an adhesive material provided for adhering the bottom of the semiconductor chip to the insulation pattern to mount the semiconductor chip on the PCB; bonding wires provided for electrically connecting the bonding electrodes to the corresponding bonding pads; and a molding material provided for sealing the PCB, the semiconductor chip, the adhesive material, and the bonding wires.
Abstract:
A phase change memory device performs a program operation by receiving program data to be programmed in selected memory cells, sensing read data already stored in the selected memory cells by detecting respective magnitudes of verify currents flowing through the selected memory cells when a verify read voltage is applied to the selected memory cells, determining whether the read data is identical to the program data, and upon determining that the program data for one or more of the selected memory cells is not identical to the corresponding read data, programming the one or more selected memory cells with the program data.
Abstract:
Disclosed is a phase-changeable memory device and method of programming the same. The phase-changeable memory device includes memory cells each having multiple states, and a program pulse generator providing current pulses to the memory cells. The program pulse generator initializes a memory cell to a reset or set state by applying a first pulse thereto and thereafter provides a second pulse to program the memory cell to one of the multiple states. According to the invention, as a memory cell is programmed after being initialized to a reset or set state, it is possible to correctly program the memory cell without influence from the previous state of the memory cell.
Abstract:
A plurality of semiconductor chips may be stacked on the substrate, and each of them may include at least one electrode pad. At least one of the plurality of semiconductor chips may include at least one redistribution pad configured to electrically connect with the at least one electrode pad.
Abstract:
A non-volatile memory device includes a set pulse generator configured to generate a set pulse, a reset pulse generator configured to generate a reset pulse based on the set pulse, and a write driver block configured to write second data to a second non-volatile memory cell using the reset pulse, while writing first data to a first non-volatile memory cell using the set pulse.
Abstract:
In one embodiment, the semiconductor device includes a non-volatile memory cell array, a write circuit configured to write to the non-volatile memory cell array, and a control circuit. The control circuit is configured to store at least one erase indicator. The erase indicator is associated with at least a portion of the non-volatile memory cell array and indicates a logic state. The control circuit is configured to control the write circuit to write the logic state indicated by the erase indicator in the non-volatile memory cell array during an erase operation of the associated portion of the non-volatile memory cell array.
Abstract:
A nonvolatile memory device may include a memory cell array having a plurality of nonvolatile memory cells arranged in a matrix including a plurality of rows of the nonvolatile memory cells. Each of a plurality of word lines may be coupled with nonvolatile memory cells of a respective row of the matrix. A row decoder may be coupled to the plurality of word lines with the row decoder being configured to disable at least one of the word lines using a row bias having a level that is adjusted responsive to changes in temperature. Such a nonvolatile memory device may operate with reduced standby currents.
Abstract:
A method programs a phase change memory device. The method comprises receiving program data for selected memory cells; generating bias voltages based on reference cells; sensing read data stored in a selected memory cell by supplying the selected memory cell with verification currents determined by the bias voltages; determining whether the read data is identical to the program data; and upon determining that the program data for one or more of the selected memory cells is not identical to the corresponding read data, iteratively applying a write current to the one or more selected memory cells.
Abstract:
Provided are a semiconductor package and a method for fabricating the same. The semiconductor package includes a lower package comprising a lower substrate, a lower semiconductor chip mounted on the lower substrate and comprising a redistribution, and a molding layer molding the lower semiconductor chip, an upper package comprising an upper substrate and an upper semiconductor chip mounted on the upper substrate, with the upper package being stacked on the lower package. The semiconductor package further includes an electrical interconnector extending from the upper substrate into the molding layer and connected to the redistribution to electrically connect the upper and lower packages to each other, and a dummy interconnector extending from the upper substrate into the molding layer to physically couple the upper and lower packages to each other.
Abstract:
A semiconductor device according to example embodiments may be configured so that, when a read command for performing a read operation is input while a write operation is performed, and when a memory bank accessed by a write address during the write operation is the same as a memory bank accessed by a read address during the read operation, the semiconductor device may suspend the write operation automatically or in response to an internal signal until the read operation is finished and performs the write operation after the read operation is finished.