Abstract:
A voltage switch circuit includes a positive voltage supply circuit configured to supply a positive voltage to a control node in response to an enable signal, a negative voltage supply circuit configured to supply a negative voltage to the control node in response to a negative voltage enable signal, a control signal generation circuit configured to generate the negative voltage enable signal in response to the enable signal, and a switch circuit configured to transfer an input voltage with a positive potential or a negative potential to an output node in response to a potential of the control node.
Abstract:
Disclosed is an improved light-emitting device for an AC power operation. A conventional light emitting device employs an AC light-emitting diode having arrays of light emitting cells connected in reverse parallel. The arrays in the prior art alternately repeat on/off in response to a phase change of an AC power source, resulting in short light emission time during a ½ cycle and the occurrence of a flicker effect. An AC light-emitting device according to the present invention employs a variety of means by which light emission time is prolonged during a ½ cycle in response to a phase change of an AC power source and a flicker effect can be reduced. For example, the means may be switching blocks respectively connected to nodes between the light emitting cells, switching blocks connected to a plurality of arrays, or a delay phosphor. Further, there is provided an AC light-emitting device, wherein a plurality of arrays having the different numbers of light emitting cells are employed to increase light emission time and to reduce a flicker effect.
Abstract:
An antenna device of a mobile terminal that can secure radiation performance is provided. The antenna device having a battery cover composed of a metal material includes a radiation unit for transmitting and receiving a signal, a feeding unit formed at an end portion of a first side of the radiation unit for electrically connecting the radiation unit to a Printed Circuit Board (PCB), and a ground part disposed a predetermined distance from the feeding unit and formed at a second side of the radiation unit. When the battery cover is fastened to the mobile terminal, the ground part contacts a first side of the battery cover.
Abstract:
Disclosed herein are a metal hydroxy carbonate nanoparticle-coated phosphor and a preparation method thereof. The phosphor coated with metal hydroxy carbonate nanoparticles exhibit improved thermal stability and an increased luminance lifespan, when applied to display devices, e.g., PDPs and lamps.