Abstract:
According to an aspect, a display apparatus includes: a substrate; a plurality of pixel electrodes provided in a display area; a plurality of switching elements coupled to the respective pixel electrodes; a plurality of first electrodes provided between semiconductors of the switching elements and the substrate in a direction orthogonal to the substrate and extending in a first direction; a plurality of signal lines coupled to the switching elements and extending in a second direction intersecting the first direction; a coupling member provided in a peripheral area outside the display area and configured to couple ends of the first electrodes to each other; and a drive circuit configured to output a first drive signal to the first electrodes or the signal lines during a first sensing period in which an electromagnetic induction method is used.
Abstract:
A proximity sensor is arranged with a first electrode input with a first signal, a second electrode input with a second signal different from the first signal, a third electrode arranged closer to the first electrode than the second electrode, and the second signal has a reverse phase of the first signal.
Abstract:
According to an aspect, a display device includes: a display area provided to a substrate; a shift register including a plurality of registers coupled in series; and a control circuit that supplies clock pulses to the registers, and that supplies a start pulse to a first register of the shift register to acquire an output from a last register of the shift register, wherein the display area is provided in an area surrounded by the shift register, the control circuit, and wiring that couples the shift register to the control circuit.
Abstract:
A display system includes an imaging apparatus installed on a mobile body; a display apparatus installed at a position different from that of the imaging apparatus on the mobile body and displaying a post-processing image; a first sensor detecting vibration at or near the imaging apparatus; a second sensor detecting vibration at or near the display apparatus; a first image processor clipping out a preprocessing image from an image captured by the imaging apparatus, based on the first sensor detection result; and a second image processor clipping out the post-processing image from the preprocessing image based on the second sensor detection result. The first image processor moves a clip-out region of the preprocessing image in a direction to counteract vibration at or near the imaging apparatus, and the second image processor causes a clip-out region of the post-processing image to follow vibration at or near the display apparatus.
Abstract:
A display apparatus with a touch detection function capable of improving accuracy is provided. The display apparatus includes: a pixel array having a plurality of pixels arranged in a matrix form; and a plurality of signal wires arranged in the pixel array. Here, when an externally-detecting object is detected, a plurality of coils having areas overlapping with each other are formed of a plurality of signal wires (drive electrodes) among the plurality of signal wires, and a magnetic field generated in the plurality of respective coils are superimposed in an overlapped area by supplying a drive signal to the plurality of coils.
Abstract:
According to one embodiment, a sensor includes a first control line, a first signal line, a first detection switch, a common electrode, a first detection electrode, a first circuit and a second circuit. The common electrode is located above the first control line, the first signal line and the first detection switch, opposed to the first control line, the first signal line and the first detection switch. The first detection electrode is located above the common electrode. The first circuit and the second circuit are located under the common electrode, and are opposed to the common electrode.
Abstract:
A display device includes: an image display panel including a plurality of pixels each including first to fourth sub-pixels; and a signal processing unit. The signal processing unit determines an expansion coefficient related to the image display panel, obtains output signals of the first to the third sub-pixels based on at least input signals of the first to the third sub-pixels and the expansion coefficient to be output to the first to the third sub-pixels respectively, obtains a fourth sub-pixel correction value as a correction value of an output signal of the fourth sub-pixel based on the input signals of the first to the third sub-pixels and the expansion coefficient, and obtains the output signal of the fourth sub-pixel based on the input signals of the first to third sub-pixels, the expansion coefficient, and the fourth sub-pixel correction value to be output to the fourth sub-pixel.
Abstract:
According to an aspect, the liquid crystal display device includes: an expansion coefficient determining unit that determines an expansion coefficient of each of partial areas based on a signal level of the first, the second, and the third colors; a luminance level determining unit that determines a luminance level of each partial area based on the signal level; a signal processing unit that uses the expansion coefficient to expand the signal level; and a light source control unit that controls brightness of a light source based on the expansion coefficient and the luminance level. The light source can change the brightness of the partial areas individually. The light source control unit controls the light source such that the brightness of the light source in a partial area having a luminance level equal to or higher than a predetermined threshold is higher than the brightness based on the expansion coefficient.
Abstract:
A display device includes an image display panel section which displays an image on the basis of an image signal, a light source section which emits light to the image display panel section by dimming control according to a control signal based on the image signal, and a control section which determines on the basis of the image signal from a mode of change in light emission luminance of the light source section whether the image displayed by the image display panel section is a dynamic image or a static image and which performs switching according to a determination result between a static image control speed and a dynamic image control speed of the dimming control. The display device suppresses image quality degradation caused at the time of displaying a dynamic image or a static image.
Abstract:
A display device includes: an image display unit in an image display region, the image display unit including a plurality of main pixels each including sub-pixels; a light source portion that irradiates the image display region; a signal correction unit that calculates saturation and value of the main pixels based on first color information to be displayed on a predetermined pixel, the first color information being obtained based on an input video signal, and generates second color information by correcting the first color information based on the calculated saturation and value; a signal generation unit that calculates the saturation and the value of the main pixels based on the second color information, and generates a signal for determining light source luminance of the light source based on the calculated saturation and value; and a light source control unit that controls luminance of the light source based on the signal.