Abstract:
Systems, methods, and dressings for treating a linear wound, such as an incision, on a patient are presented. The systems, dressings, and methods involve a sealed wound dressing assembly that helps form a fluid seal around the linear wound while simultaneously encompassing a subcutaneous delivery conduit to deliver fluid to or from a subcutaneous tissue site. In one instance, a reduced-pressure interface is used to allow the subcutaneous delivery conduit to pass through tissue at or near the linear wound and through a wound dressing assembly to a drainage receptacle.
Abstract:
A system and method for performing tissue therapy may include applying a reduced pressure to a tissue site, sensing a fluid parameter being applied to the tissue site, generating a fluid sensor signal in response to sensing the fluid parameter, and altering the fluid sensor signal in response to sensing that the fluid parameter changes. A fluid leak location mode may be entered. In response to the fluid leak location mode being entered, a graphical user interface that provides for fluid leak location functionality may be displayed. In one embodiment, the fluid leak location mode may be automatically entered in response to the sensor signal crossing a threshold value. Additionally, an alarm signal may be generated in response to determining that the fluid sensor signal crosses the threshold value.
Abstract:
Dressings, systems, and methods for treating a tissue site on a patient involve allowing liquids from the tissue site or a priming fluid to evaporate and exit the dressing through a liquid-impermeable, vapor-permeable membrane. The dressing is able to process more liquids than would otherwise be possible without evaporation and potentially to create reduced pressure. Other dressings, systems, and methods are disclosed.
Abstract:
A compression therapy apparatus and a method for manufacturing and applying compression with the same may include a bandage and a tension indicator coupled to the bandage. A tension indicator may include a film having layers of liquid crystal droplets deposited on a polymer matrix. The tension indicator can be adapted to color shift under tension between the first end and the second end of the bandage.
Abstract:
Manifold structures, systems, and methods are disclosed that include using longitudinal members and one or more shaped projections to cause microstrain at a tissue site. In one instance a manifold structure includes a plurality of spaced longitudinal members and at least one shaped projection coupled to at least one of the plurality of longitudinal members for creating a microstrain at a tissue site. The at least one shaped projection includes a columnar member having a distal end and includes an enlarged member positioned at the distal end of the columnar member. The columnar member has a first outer diameter (D1) and the enlarged member has a second outer diameter (D2). The second outer diameter of the enlarged member is greater than the first outer diameter of the columnar member (D2>D1). Other systems, methods, and structures are presented.
Abstract:
Adjustable covers, systems, and methods are presented that include an adjustable cover that may be adjusted to an appropriate size by hand without requiring cutting tools and without substantial leaks. In one instance, the adjustable covering includes a drape member with a plurality of non-leaking tear paths. Each non-leaking tear path includes a weakened path of the drape member that may be torn. The adjustable covering may further include a first plurality of tear starters formed on a first initiation edge of the drape member. Each tear starter of the first plurality of tear starters is aligned with one of the plurality of tear paths. Each of the first plurality of tear starters is adapted to facilitate the initiation of a tear along a tear path. The grains of the drape member, a backing layer, and support layer may also be in the same direction. Other adjustable covers, systems, and methods are presented.
Abstract:
Wounds dressings, systems, and methods are presented that involve using a patient's body heat to enhance liquid removal from the wound dressing through a high-moisture-vapor-transmission-rate drape. Additional heat sources or devices, such as nano-antennas or electrical heating elements, may be added or used separately to enhance the removal liquid from the wound dressing. Other dressings, systems, and methods are presented herein.
Abstract:
Methods for treating a wound include positioning a wound filler having a coating agent containing a fluorescent material proximate the wound. The wound filler is removed after a time period. The wound is then scanned using a fluorescence scanner to determine whether a portion of the wound filler remains at the wound. In response to the portion of the wound filler remaining at the wound, the portion of the wound filler is removed. Other methods and systems are presented.
Abstract:
A wound treatment system comprises a wound-treatment apparatus and a wound dressing coupled to the apparatus. The wound dressing includes a foam structure wound insert having pores with a greater cross-sectional area when viewed from a first direction and a smaller cross-sectional area when viewed from an orthogonal direction. Methods for making such wound inserts may include compressing foam structure material having pores with a substantially uniform cross-sectional area. Methods for treating a wound using a wound insert.
Abstract:
A wound healing system for promoting healing of a wound of a patient includes a positive pressure source, a reduced pressure source, and a porous foam positioned in contact with the wound. The porous foam includes a plurality of flow channels in fluid communication with the reduced pressure source. The system further includes a filler member having a flexible wall defining an interior chamber. The interior chamber is in fluid communication with the positive pressure source, and a cover member is positioned over the filler member.