Abstract:
A photosensitive composition, which comprises (A) a compound capable of generating an organic acid represented by formula (I) upon irradiation with actinic ray or radiation: Z—A—X—B—R—(Y)n (I) wherein Z represents an organic acid group; A represents a divalent linking group; X represents a divalent linking group having a hetero atom; B represents an oxygen atom or —N(Rx)—; Rx represents a hydrogen atom or a monovalent organic group; R represents a monovalent organic group substituted with Y, and when B represents —N(Rx)—, R and Rx may be bonded to each other to form a cyclic structure; Y represents —COOH or —CHO, and when a plurality of Y's are present, the plurality of Y's may be the same or different; and n represents an integer of from 1 to 3.
Abstract:
A photosensitive composition comprising a compound capable of generating a specific sulfonic acid upon irradiation with actinic rays or a radiation; a compound capable of generating a specific sulfonic acid upon irradiation with an actinic ray or a radiation; and a pattern forming method using a photosensitive composition comprising a compound capable of generating a specific sulfonic acid upon irradiation with an actinic ray or a radiation.
Abstract:
In order to provide silicon for solar batteries inexpensively by efficient refining and without lowering the refining rate, the present invention is directed to a method for refining molten silicon containing an impurity element. According to one aspect, the method includes the steps of: bringing a refine gas containing a component that reacts with the impurity element into contact with the molten silicone, thereby removing a product containing the impurity element from the molten silicon; and bringing a process gas, having small reactivity with the molten silicon, with the molten silicon, thereby removing a product generated by reaction of the molten silicon and the refine gas.
Abstract:
There is provided a multi-layered structure forming method comprising: (A) forming a first insulating material layer containing a first photo-curing material on a substrate; (B) semi-hardening the first insulating material layer by radiating light having a first wavelength to the first insulating material layer; (C) forming a conductive material layer on the semi-hardened first insulating material layer by ejecting droplets of a conductive material to the semi-hardened first insulating material layer from a nozzle of a liquid droplet ejecting apparatus; (D) forming a second insulating material layer containing a second photo-curing material so as to cover the semi-hardened first insulating material layer and the conductive material layer; and (E) forming a first insulating layer, a conductive layer positioned on the first insulating material, and a second insulating layer covering the first insulating layer and the conductive layer by simultaneously heating the first insulating material layer, the conductive material layer, and the second insulating material layer.
Abstract:
The present invention provides an ink composition, and inkjet recording method, a printed material, a production method of a planographic printing plate, and a planographic printing plate. The ink composition of the present invention contains a cationically polymerizable compound, a compound that generates an acid when irradiated with a radiation ray, and an onium salt compound that generates an organic acid compound having a basic nitrogen atom when irradiated with a radiation ray.
Abstract:
A photosensitive composition for use in the production process of a semiconductor such as IC, in the production of a circuit substrate of liquid crystal, thermal head and the like or in other photofabrication processes, a compound for use in the photosensitive composition, and a pattern forming method using the photosensitive composition, are provided, which are a photosensitive composition excellent in the sensitivity, resolution and pattern profile, assured of large exposure latitude and small pitch dependency, and improved in the sensitivity and dissolution contrast at the exposure with EUV light, a pattern forming method using the photosensitive composition, and a compound useful for the photosensitive composition.
Abstract:
A method of manufacturing an optical element including the steps of: forming a through hole in a semiconductor element which has an optical section and an electrode electrically connected to the optical section; and forming a conductive layer extending from a first surface of the semiconductor element on which the optical section is formed, through an inner wall surface of the through hole, to a second surface opposite to the first surface.
Abstract:
A chemical amplification resist composition comprising (A) a resin increasing the solubility in an alkali developer by the action of an acid, (B) a compound capable of generating an acid upon irradiation with actinic ray or radiation, (C) a compound having a fluorine atom and a hydroxyl group, and a pKa value of from 4 to 15, and (D) a solvent, and a pattern-forming method using the same.
Abstract:
The present invention aims to provide a mounting technology that prevents unnecessary consumption of materials. A method for manufacturing a circuit element includes the steps of: setting a semiconductor element on a stage so that a metal pad of the semiconductor element faces a head; changing positions of the head relative to the semiconductor element; dispensing a liquid conductive material from a nozzle so that the conductive material is coated on the metal pad when the nozzle reaches a position corresponding to the metal pad; and either activating or drying the coated conductive material in order to obtain a UBM layer on the metal pad.
Abstract:
Method capable of preparing silicon having purity of about 6N applied to a solar cell efficiently at a low cost. Raw silicon containing boron and a slag are melted and a shaft is rotated by a rotating/driving mechanism for stirring the molten silicon. The molten slag is dispersed in the molten silicon, thereby accelerating the boron removal reaction. It is further effective to use a slag containing at least 45 percent by mass of silicon oxide or to blow gas mixed with water vapor into the molten silicon for refining reaction.