Methods of manufacturing optically anisotropic polymer thin films

    公开(公告)号:US11597198B2

    公开(公告)日:2023-03-07

    申请号:US17137455

    申请日:2020-12-30

    Abstract: A method of manufacturing an optically anisotropic polymer thin film includes forming a composite structure that includes a polymer thin film and a high Poisson's ratio polymer thin film disposed directly over the polymer thin film, attaching a clip array to opposing edges of the composite, the clip array including a plurality of first clips slidably disposed on a first track located proximate to a first edge of the composite and a plurality of second clips slidably disposed on a second track located proximate to a second edge of the composite, applying a positive in-plane strain to the composite along a transverse direction by increasing a distance between the first clips and the second clips, and decreasing an inter-clip spacing amongst the first clips and amongst the second clips along a machine direction, wherein the high Poisson's ratio polymer thin film applies a negative in-plane strain to the polymer thin film along the machine.

    HIGH STRENGTH AND HIGH THERMAL CONDUCTIVITY POLYETHYLENE THIN FILM HAVING A BIMODAL MOLECULAR WEIGHT

    公开(公告)号:US20220348747A1

    公开(公告)日:2022-11-03

    申请号:US17554982

    申请日:2021-12-17

    Abstract: An optically clear, high strength, high modulus, and high thermal conductivity polyethylene thin film may be formed from a crystallizable polymer and an additive configured to interact with the crystallizable polymer to facilitate crystallite alignment and, in some examples, create a higher crystalline content within the polyethylene thin film. The polyethylene thin film may be characterized by a bimodal molecular weight distribution where the molecular weight of the additive may be less than approximately 5% of the molecular weight of the crystallizable polymer. Example crystallizable polymers may include high molecular weight polyethylene, high density polyethylene, and ultra-high molecular weight polyethylene. Example additives may include low molecular weight polyethylene and polyethylene oligomers. The polyethylene thin film may be characterized by a Young's modulus of at least approximately 10 GPa, a tensile strength of at least approximately 0.7 GPa, and a thermal conductivity of at least approximately 5 W/mK.

    Switchable retardation device with reduced residual retardation

    公开(公告)号:US11435641B1

    公开(公告)日:2022-09-06

    申请号:US17137916

    申请日:2020-12-30

    Abstract: A switchable optical retardation device includes a switchable retardation element including liquid crystals and an electrical driver circuit. While in a first state, the switchable retardation element modifies light transmitted through the switchable retardation element by causing a phase shift of a first retardation angle. While in a second state, the switchable retardation element modifies the light transmitted through the switchable retardation element by causing a phase shift of a second retardation angle distinct from the first retardation angle. The electrical driver circuit provides a first voltage for placing the switchable retardation element in the first state and a second voltage for placing the switchable retardation element in the second state. The first voltage is greater than the second voltage, the second voltage is a non-zero voltage, and the electrical driver circuit alternatingly provides the first voltage and the second voltage with a predefined frequency.

Patent Agency Ranking