Abstract:
Technology is disclosed for enabling multiple computing devices used by a user to interoperate with one another. The technology enables the user to install a given application on a distributed operating system (“DCOS”) managing the multiple computing devices as a single entity. The user can then use the given application through any of the computing devices when executing the given application through the DCOS.
Abstract:
At least one embodiment of this disclosure includes a method of sharing application states across different user profiles. The method can include: receiving a request from a first computing device associated with a first user profile to load an application state of a target application, wherein the application state is owned by a second user profile; verifying permission for the first user profile to load the application state owned by the second user profile; configuring a sharing instance of the application state of the target application by accessing application data of the application state associated with the second user profile in a storage service; and sending the sharing instance to be loaded onto the first computing device.
Abstract:
At least one embodiment of this disclosure includes a method of resource balancing execution of a location-based application involving multiple devices. The method can include: identifying an application executing on an operating system of a first computing device; identifying a resource type to facilitate the executing of the location-based application; identifying computing devices each having at least an available resource instance of the identified resource type, wherein the computing devices are reachable by a communication protocol of the first computing device; and selecting a target computing device to offer up a target resource instance of the resource type to the location-based application based at least partly on a comparable limitation of each available resource instance of the computing devices.
Abstract:
Technology is disclosed for synchronizing audio files from a computing device of a user to an in-vehicle computing device, such as an audio system, installed in an automobile. In one example, when the user plays an audio file on the in-vehicle computing device from the computing device, the audio file is copied at the in-vehicle computing device. After copying the currently playing audio file, the in-vehicle computing device can also copy at least some of the audio files from the computing device. The in-vehicle computing device computes a popularity score of each of the audio files based on an access pattern of the audio files, and categorizes them into priority files and low-priority files based on their popularity score. While the in-vehicle computing device copies the priority files, it copies metafiles of the low-priority files. The metafiles can include information such as a title, artist, etc. of the audio files.
Abstract:
Technology is disclosed for providing configurable synchronization mechanisms for automatic synchronization of application states across multiple devices using cloud storage. In accordance with the techniques introduced here, a method includes steps of receiving a request for supplemental application synchronization information associated with a first application on a first remote computing device. In response the request for the supplemental application synchronization information, application-specific configuration information is determined for synchronizing a state of the first application to a cloud-based storage service. The supplemental application synchronization information including the application-specific configuration information is then provided to the first remote computing device for facilitating synchronization of the state of the first application to the cloud-based storage service.
Abstract:
Technology is disclosed for performing a priority synchronization of a computing device to download a selected set of data files to the computing device from a distributed backup system. Data files are downloaded to a computing device by synchronizing the computing device with a server of the distributed backup system. A priority sync downloads a subset of the data files (“priority files”) rather than all of the data files of the user, thereby minimizing the computing resources consumed to download the data files. The priority sync can select the priority files based on various criteria, including an access pattern of the data files, attributes of the data files, or attributes of the computing device. The priority sync can also download the data files not identified as priority files (“non-priority files”). While the priority files are downloaded in their original format, the non-priority files are downloaded in a downgraded format.
Abstract:
Technology is disclosed for selectively backing up audio files and video files of a user in a distributed backup system. In the distributed backup system, the user can define various policies for storing different data files of the user at different devices of the user and/or at a server. For example, the user may define a policy for storing video files on a device having a bigger display and audio files on a device which the user uses more often than the other devices. When a backup is initiated on a particular device, the technology identifies target devices based on the defined policies, and transmits the audio and video files from the particular device to the corresponding target devices. The audio and video files are transmitted via the server or directly if the target devices are in proximity to the particular device.
Abstract:
Technology is disclosed herein for optimizing data caches among multiple interconnected computing devices. According to at least one embodiment, a storage server transfers a first data set to a computing device. The storage server then identifies a neighbor computing device sharing a local area network (LAN) with the computing device. The neighbor computing device maintains a network connection with the storage server. The storage server transmits a second data set relevant to the first data set to the neighbor computing device. In response to a read request for the second data set from the computing device, the storage server sends to the computing device an instruction indicating that the neighbor computing device is storing a data cache for the computing device.
Abstract:
Technology is disclosed for providing configurable synchronization mechanisms for automatic synchronization of application states across multiple devices using cloud storage. In accordance with the techniques introduced here, a method includes steps of receiving a request for supplemental application synchronization information associated with a first application on a first remote computing device. In response the request for the supplemental application synchronization information, application-specific configuration information is determined for synchronizing a state of the first application to a cloud-based storage service. The supplemental application synchronization information including the application-specific configuration information is then provided to the first remote computing device for facilitating synchronization of the state of the first application to the cloud-based storage service.
Abstract:
Technology is disclosed for sharing an authentication profile of a user between a group of user devices for accessing an access restricted computing environment (“the technology”). The access restricted computing environment can require the user to input authentication information, such as a username, password, or answers to challenge questions, to authenticate the user. For example, to access a wireless network on a first user device, a user may have to input a password for the wireless network. To access the same wireless network on a second user device, the user may have to input the password again on the second user device. The technology facilitates the user to obtain the authentication information required to access the wireless network from another user device, e.g., a device from which the user has accessed the wireless network previously. This can eliminate the need for the user to manually input the authentication information repeatedly.