Abstract:
Threads using hardware transactions and executing instrumented critical sections that do not perform any writes may complete as long as the thread holding the lock has not yet executed its first write operation. If the thread executing the instrumented critical section performs any writes, or if the thread holding the lock performs any writes during its critical section, the hardware transaction may be aborted. A write flag may be used to determine whether the thread holding the lock performs any writes. The thread holding the lock may set the flag before performing any write operation. The thread executing the hardware transaction may subscribe to that flag and abort the transaction if the flag is set to true, indicating that the thread holding the lock performed a write operation.
Abstract:
A computer including multiple processors and memory implements a managed runtime providing a synchronization application programming interface (API) for threads that perform synchronized accesses to shared objects. A standardized header of objects includes a memory word storing an object identifier. To lock the object for synchronized access, the memory word may be converted to store the tail of a linked list of a first-in-first-out synchronization structures for threads waiting to acquire the lock, with the object identifier relocated to the list structure. The list structure may further include a stack of threads waiting on events related to the object, with the synchronization API additionally providing wait, notify and related synchronization operations. Upon determining that no threads hold or desire to hold the lock for the object and that no threads are waiting on events related to the object, the memory word may be restored to contain the object identifier.
Abstract:
A computer comprising one or more processors and memory may implement multiple threads that perform a lock operation using a data structure comprising an allocation field and a grant field. Upon entry to a lock operation, a thread allocates a ticket by atomically copying a ticket value contained in the allocation field and incrementing the allocation field. The thread compares the allocated ticket to the grant field. If they are unequal, the thread determines a number of waiting threads. If the number is above the threshold, the thread enters a long term wait operation comprising determining a location for long term wait value and waiting on changes to that value. If the number is below the threshold or the long term wait operation is complete, the thread waits for the grant value to equal the ticket to indicate that the lock is allocated.
Abstract:
A computer comprising one or more processors and memory may implement multiple threads that perform a lock operation using a data structure comprising an allocation field and a grant field. Upon entry to a lock operation, a thread allocates a ticket by atomically copying a ticket value contained in the allocation field and incrementing the allocation field. The thread compares the allocated ticket to the grant field. If they are unequal, the thread determines a number of waiting threads. If the number is above the threshold, the thread enters a long term wait operation comprising determining a location for long term wait value and waiting on changes to that value. If the number is below the threshold or the long term wait operation is complete, the thread waits for the grant value to equal the ticket to indicate that the lock is allocated.
Abstract:
Transactional Lock Elision allows hardware transactions to execute unmodified critical sections protected by the same lock concurrently, by subscribing to the lock and verifying that it is available before committing the transaction. A “lazy subscription” optimization, which delays lock subscription, can potentially cause behavior that cannot occur when the critical sections are executed under the lock. Hardware extensions may provide mechanisms to ensure that lazy subscriptions are safe (e.g., that they result in correct behavior). Prior to executing a critical section transactionally, its lock and subscription code may be identified (e.g., by writing their locations to special registers). Prior to committing the transaction, the thread executing the critical section may verify that the correct lock was correctly subscribed to. If not, or if locations identified by the special registers have been modified, the transaction may be aborted. Nested critical sections associated with different lock types may invoke different subscription code.
Abstract:
Generic Concurrency Restriction (GCR) may divide a set of threads waiting to acquire a lock into two sets: an active set currently able to contend for the lock, and a passive set waiting for an opportunity to join the active set and contend for the lock. The number of threads in the active set may be limited to a predefined maximum or even a single thread. Generic Concurrency Restriction may be implemented as a wrapper around an existing lock implementation. Generic Concurrency Restriction may, in some embodiments, be unfair (e.g., to some threads) over the short term, but may improve the overall throughput of the underlying multithreaded application via passivation of a portion of the waiting threads.
Abstract:
A computer comprising one or more processors and memory may implement multiple threads performing mutually exclusive lock acquisition operations on disjoint ranges of a shared resource each using atomic compare and swap (CAS) operations. A linked list of currently locked ranges is maintained and, upon entry to a lock acquisition operation, a thread waits for all locked ranges overlapping the desired range to be released then inserts a descriptor for the desired range into the linked list using a single CAS operation. To release a locked range, a thread executes a single fetch and add (FAA) operation. The operation may be extended to support simultaneous exclusive and non-exclusive access by allowing overlapping ranges to be locked for non-exclusive access and by performing an additional validation after locking to provide conflict resolution should a conflict be detected.
Abstract:
Adaptive selection of source matrix version for matrix multiply operations may be performed. Different versions of a matrix used in a matrix multiply operation, such as a transposed matrix and non-transposed matrix, may be selected and used when a matrix multiply operation is performed. The selection may be based on a performance profile that is identified for the matrix multiply operation.
Abstract:
A computer system including one or more processors and persistent, word-addressable memory implements a persistent atomic multi-word compare-and-swap operation. On entry, a list of persistent memory locations of words to be updated, respective expected current values contained the persistent memory locations and respective new values to write to the persistent memory locations are provided. The operation atomically performs the process of comparing the existing contents of the persistent memory locations to the respective current values and, should they match, updating the persistent memory locations with the new values and returning a successful status. Should any of the contents of the persistent memory locations not match a respective current value, the operation returns a failed status. The operation is performed such that the system can recover from any failure or interruption by restoring the list of persistent memory locations.
Abstract:
A computer including multiple processors and memory implements a managed runtime providing a synchronization application programming interface (API) for threads that perform synchronized accesses to shared objects. A standardized header of objects includes a memory word storing an object identifier. To lock the object for synchronized access, the memory word may be converted to store the tail of a linked list of a first-in-first-out synchronization structures for threads waiting to acquire the lock, with the object identifier relocated to the list structure. The list structure may further include a stack of threads waiting on events related to the object, with the synchronization API additionally providing wait, notify and related synchronization operations. Upon determining that no threads hold or desire to hold the lock for the object and that no threads are waiting on events related to the object, the memory word may be restored to contain the object identifier.