Abstract:
A hearing aid includes a forward path including a) an input transducer proving an electric input signal, b) a hearing aid processor, and c) an output transducer. The hearing aid further includes d) a feedback control system having d1) a feedback path estimator including an adaptive filter configured to provide an estimate of a current feedback path from the output transducer to at least one input transducer, the feedback path estimator being controllable via a feedback estimation control input, and d2) a combination unit in the forward path configured to subtract the estimate (v′) of the current feedback path signal (v) from a signal of the forward path (y) to provide a feedback corrected signal (e), and e) a detector for providing the feedback estimation control input in dependence of an offset control signal indicative of an offset in the electric input signal or a signal originating therefrom.
Abstract:
A hearing device, e.g. a hearing aid, comprises a forward path for processing an electric signal representing sound including a) an input unit for receiving or providing an electric input signal representing sound, b) a signal processing unit, c) an output transducer for generating stimuli perceivable as sound to a user, d) a feedback detection unit configured to detect feedback or evaluate a risk of feedback via an acoustic or mechanical or electrical feedback path from said output transducer to said input unit and comprising d1) a magnitude and phase analysis unit for repeatedly determining magnitude, Mag, and phase, Phase, of said electric input signal and further parameters based thereon, and d2) a feedback conditions and detection unit configured to check criteria for magnitude and phase feedback condition, respectively, based on said values, and to provide a feedback detection signal indicative of feedback or a risk of feedback.
Abstract:
A hearing device, e.g. a hearing aid, is provided, comprising a forward path comprising an input transducer for providing an electric input signal, a signal processing unit configured to apply a requested forward gain to the electric input signal, and an output transducer. The hearing device further comprises a feedback reduction unit for reducing a risk of howl due to feedback from the output transducer to the input transducer. The forward path and the external feedback path defines a roundtrip loop delay. The feedback reduction unit is configured to modulate said requested forward gain in time, to provide that the resulting forward gain exhibits a first, increased gain AH in a first time period TH and a second, reduced gain AL in a second time period TL, wherein at least one of AH, AL, TH, and TL is/are determined according to a predetermined or adaptively determined criterion including said roundtrip loop delay.
Abstract:
A hearing device comprises a feedback-path estimation unit, which adaptively estimates a feedback path from an output transducer to an input transducer, and sets an adaptation-step size of an adaptive feedback-path estimation algorithm in dependence on an estimate of a background-noise spectrum. The feedback-path estimation unit provides an estimation-control signal for generating an acoustic feedback-path estimation signal having an level spectrum, which has at least one first frequency band with non-zero level and at least one second frequency band with zero level or with a non-zero level smaller than the level in the first frequency band and smaller than a background-noise level in the respective second frequency band. Background noise is detected in the second frequency band while the feedback-path estimation signal is provided. The background-noise level in the at least one first frequency band is estimated for obtaining the estimate of the background-noise spectrum. A corresponding method is described. The method is e.g. useful for estimating a feedback path during fitting of a hearing device, e.g. a hearing aid, to a particular user's needs.
Abstract:
Method and audio processing system determine a system parameter sp in a gain loop of an audio processing system. An alternative scheme is provided for feedback estimation in a multi-microphone audio processing system comprising an injected probe signal. The problem is solved in that a) an expression of an approximation of the expected square of the stationary loop gain, LGstat(ω,n), and b) an expression of the convergence or decay rate of the expected square of the stationary loop gain, LGstat(ω,n), after an abrupt change in one or more system parameters are determined, and in that c) a system parameter sp is determined from one of said expressions under the assumption that other system parameters are fixed. The method has the advantage of providing a relatively simple way of identifying and controlling dynamic changes in the acoustic feedback path(s).