Abstract:
Electrically operated propellant thrust assist supplements an airplane's takeoff, landing or inflight maneuvers. Unlike conventional SRM propellants, the burn rate of the electrically operated propellant can be varied via an electrical input and even extinguished by interrupting the electrical to control a secondary thrust profile (e.g., amplitude, transition rates) to fulfill the needs of a given takeoff, inflight or landing maneuver and provide a smooth transition in and out of the maneuver. Multiple pairs of fixed thrusters (opposite sides of the fuselage), a single pair of gimbaled thrusters or a hybrid of fixed and gimbaled thrusters may be configured to provide all such maneuvers. Flight control inputs are passed back and forth through an interface to enable the thrust assist.
Abstract:
An actuator produces a displacement that maintains positive contact between an electrically operated propellant and a pair of electrodes to ignite and sustain combustion of an ignition surface. The electrodes are suitably configured such that current lines between the electrodes follow equipotential surfaces through the propellant. The displacement drives a contour of the ignition surface to substantially match an equipotential surface corresponding to a maximum and uniform current density J at a minimum gap between the electrodes to ignite and combust the entire ignition surface. The flat, angled or curved contact areas of the electrodes are suitably symmetric about a plane.
Abstract:
A release mechanism includes a frame with an interior. The release mechanism also includes a prestrained element coupled to the interior of the frame. The prestrained element creates a seal with the frame. The prestrained element is notched in one or more regions. The prestrained element is configured to fracture when heated to a predetermined temperature allowing the interior to open. The fracture is based on the notched regions of the prestrained element such that separation initiates within the notched regions. The remaining regions of the prestrained element unfractured. The shape memory alloy element can include one or more of a nickel-titanium alloy, a titanium-nickel alloy, a copper-zinc-aluminum alloy, a copper aluminum nickel alloy, and a nickel titanium hafnium alloy. Heating of the shape memory alloy element causes a stress in the shape memory alloy that causes fracturing of the prestrained alloy when sufficient heating has been achieved.
Abstract:
A system includes a structure configured to undergo oscillatory movement. The system also includes a friction damping clamp coupled to the structure. The friction damping clamp includes a housing having a groove. The friction damping clamp also includes a roller positioned at least partially within the groove, where the groove has first and second ramps. The roller is configured to move up each ramp of the groove so that more compression is applied on the structure and to move down each ramp of the groove so that less compression is applied on the structure. The roller may be configured to apply more compression on the structure to increase friction between portions of the structure, to apply less compression on the structure to decrease friction between the portions of the structure, and to apply substantially no compression on the structure when the roller is located at a center of the groove.
Abstract:
A rocket motor has an electrically operated propellant initiator for a propellant grain that includes an electrode arrangement configured to concentrate an electric field at an ignition electrode for igniting an electrically operated propellant. The rocket motor includes a combustion chamber containing at least one propellant grain and an electrically operated propellant initiator operatively coupled to the propellant grain to initiate combustion of the propellant grain. The electrically operated propellant initiator includes the electrically operated propellant and at least one pair of electrodes configured to ignite the electrically operated propellant. The pair of electrodes includes a ground plane electrode and an ignition electrode. When an electrical input is applied to the electrically operated propellant initiator, the electric field is concentrated at the ignition electrode to ignite the electrically operated propellant at the location where the ignition electrode is arranged.
Abstract:
A heat-activated triggering device, such as for a missile or munition, includes a firing pin that is driven into a primer, to initiate a detonation and/or combustion reaction. The firing pin may be mechanically coupled to a linkage that prevents egress of output from the primer if the firing pin has not been moved. The linkage may include, for example, a cylindrical valve element with a through hole, the through hole being alignable with an output channel from the primer when the firing pin has been moved sufficiently. The movement of the firing pin slides a dowel pin that is attached to the firing pin. This in turn translates a cam element that turns the cylindrical element. Partial movement of the firing pin still may leave the valve closed. Preventing the primer from prematurely operating to trigger explosion, for example preventing full operation due to a primer being heated.
Abstract:
A heat-activated triggering device, such as for a missile or munition, includes a bi-metal trigger element, with a breakable pin of a first metal surrounded by a sleeve made of a second metal that is different than the first metal. The sleeve may be made of a shape memory alloy, such as a single-crystal shape memory alloy, that is pre-compresses around part of the pin. The sleeve may be configured to put a tension force on the pin as the sleeve passes a predetermined temperature, for instance a temperature at which the shape memory feature of the sleeve is activated. The pin may have a weakened portion, such as a notched portion, at which the pin breaks. The breaking of the pin may be used to drive a firing pin into a primer, to initiate a detonation and/or combustion reaction.
Abstract:
A thruster includes multiple segments of electrically-operated propellant, electrodes for igniting one or a few of the electrically-operated propellant segments at a time, and a propellant feeder for moving further propellant segments into engagement with the electrodes. The segments may be configured to provide equal increments of thrust, or different amounts of thrust. The segments may each include an electrically-operated propellant material surrounded by a sealing material, so as to keep the propellant material away from moisture and other contaminants (and/or the vacuum of space) before each individual segment is to be used. The thruster may be included in any of a variety of flight vehicles, for example in a small satellite such as a CubeSat satellite, for instance having a volume of about 1 liter, and a mass of no more than about 1.33 kg.
Abstract:
A mechanical actuator is disclosed. The mechanical actuator can comprise an interface portion configured to interface with an object, a spring configured to exert a force on the interface portion, and a shape memory member coupled to the interface portion. The shape memory member can be configured to fracture at a predetermined temperature range. Upon fracture of the shape memory member, the force of the spring can cause the interface portion to act on the object.
Abstract:
A mechanical actuator is disclosed. The mechanical actuator can comprise an interface portion configured to interface with an object, a spring configured to exert a force on the interface portion, and a shape memory member coupled to the interface portion. The shape memory member can be configured to fracture at a predetermined temperature range. Upon fracture of the shape memory member, the force of the spring can cause the interface portion to act on the object.