Abstract:
An ultrasonic transducer includes a support body, a first piezoelectric layer, a first conductive layer, a second conductive layer and a second piezoelectric layer. The support body has an opening section and a displacement section covering the opening section on one side of the support body. The first piezoelectric layer is disposed inside of the displacement section when viewed in a plan view along a thickness direction of the support body. The first conductive layer and the second conductive layer contact with the first piezoelectric layer. The second piezoelectric layer is disposed over the first conductive layer, apart from the first piezoelectric layer when viewed in the plan view. The second conductive layer is disposed over the second piezoelectric layer and intersects the first conductive layer when viewed in the plan view.
Abstract:
An ultrasonic device includes a base, a plurality of ultrasonic transducer elements, an acoustic adjustment layer, and a wall part. The ultrasonic transducer elements are arranged in an array form on the base, each of the ultrasonic transducer elements having a vibration film. The acoustic adjustment layer is disposed on each of the ultrasonic transducer elements. The wall part is arranged between adjacent ones of the ultrasonic transducer elements when viewed in a plan view along a thickness direction of the base such that the acoustic adjustment layer on the adjacent ones of the ultrasonic transducer elements are separated by the wall part in a range of at least a portion of a height of the acoustic adjustment layer measured from the base. The wall part has an acoustic impedance that is higher than an acoustic impedance of the acoustic adjustment layer.
Abstract:
A piezoelectric element includes a support body having a displacing part capable of undergoing displacement, a lower electrode layer having a lower main electrode body and a lower electrode wire part with the lower main electrode body being formed on the support body and provided within the displacing part in a plan view and the lower electrode wire part being connected to the lower main electrode body and provided across an interior and an exterior of the displacing part, a first piezoelectric layer provided on the lower main electrode body, an upper electrode layer provided across the interior and exterior of the displacing part with at least a part of the upper electrode layer being layered on the first piezoelectric layer and insulated from the lower electrode layer, and a second piezoelectric layer provided on the support body to cover at least a part of the lower electrode wire part.
Abstract:
A drive apparatus for an ultrasonic device includes a transmission circuit for outputting a first through n-th (where n is an integer 2 or greater) drive signal to first through n-th driving electrode line belonging to the ultrasonic device, as well as a control unit for controlling the transmission circuit. In a case where the phase difference between an i-th (where i is an integer 1≦i≦n−1) drive signal and an i+1-th drive signal is a first phase difference, the transmission circuit outputs the first through n-th drive signals at a greater voltage amplitude than a case where the phase difference between the i-th drive signal and the i+1-th drive signal is a second phase difference greater than the first phase difference.