Abstract:
A display device may include a display panel configured to display an image. The display device may further include a first electrode overlapping the display panel and separated from the display panel. The display device may further include a second electrode overlapping the first electrode and separated from the display panel. The display device may further include a first liquid crystal layer disposed between the first electrode and a first portion of the second electrode. The display device may further include a third electrode electrically insulated from the first electrode, overlapping the second electrode, and separated from the display panel. The display device may further include a second liquid crystal layer disposed between the third electrode and a second portion of the second electrode.
Abstract:
The inventive concept provides a liquid crystal display including an insulation substrate; a roof layer which is formed on the insulation substrate; a pixel electrode which is formed on the insulation substrate and under the microcavity supported by the roof layer; and a liquid crystal layer which is disposed in the microcavity. The opening corresponding to unit microcavity includes portions having a first width and a second width. According to the inventive concept, configurations of the pixel and the opening which may minimize the remaining liquid crystal are provided to adjust a size of the liquid crystal injection hole between a plurality of microcavities into which the liquid crystal is injected, which may prevent an orientation error of the liquid crystal caused by the remaining liquid crystal outside the microcavity and thus prevent the display error.
Abstract:
The present invention provides a display device including a substrate including a plurality of pixel areas, a thin film transistor formed on the substrate, a common electrode and a pixel electrode formed on the thin film transistor, a liquid crystal layer filling a microcavity formed on the common electrode and the pixel electrode, a lower insulating layer formed to be spaced apart from the common electrode and the pixel electrode, a roof layer formed on the lower insulating layer, an intermediate insulating layer formed on the roof layer, a first touch sensing electrode formed on the intermediate insulating layer, an injection hole partially exposing the microcavity formed in the roof layer, the intermediate insulating layer, and the first touch sensing electrode, an overcoat formed on the first touch sensing electrode to cover the injection hole and sealing the microcavity, and a second touch sensing electrode formed on the overcoat.
Abstract:
Provided is a display device, including: an insulation substrate; a thin film transistor positioned on the insulation substrate; a pixel electrode connected with the thin film transistor; a first alignment layer positioned on the pixel electrode; a second alignment layer spaced apart from the first alignment layer by a microcavity; a common electrode positioned on the second alignment layer; a roof layer on the common electrode; a liquid crystal injection hole in the common electrode and the roof layer to extend to a part of the microcavity; a liquid crystal layer filling the microcavity; and an overcoat on the roof layer to cover the liquid crystal injection hole to seal the microcavity. Each of the first alignment layer and the second alignment layer includes a plurality of heterogeneous layers.
Abstract:
A display device includes a substrate and pixels arranged on the substrate in a matrix form. The substrate includes a display area in which the pixels are arranged and a non-display area disposed adjacent to a side of the display area. Each pixel includes a cover layer that extends in a row direction that includes a sidewall portion connected to the substrate and a cover portion spaced apart from the substrate and connected to the sidewall portion to define a tunnel-shaped cavity on the substrate. A width of the sidewall portion between adjacent pixels is less than a width of the sidewall portion disposed at an outermost position, and the cover layer seals one side of the tunnel-shaped cavity in the pixels arranged in a first row and a last row.