Abstract:
According to certain embodiments, an electronic device comprises a first housing; a second housing; a hinge disposed between the first housing and the second housing such that the second housing is foldable at one end of the first housing; and a flexible display disposed on a surface of the first housing and a surface of the second housing, wherein the flexible display comprises a display panel, and a glass layer disposed on the display panel, such that the display panel is between the glass layer and the surface of the first housing and the surface of the second housing, wherein the glass layer comprises: a bendable portion configured to be flat in an unfolded state when the first housing and the second housing are disposed horizontally adjacent, and to be bent in a folded state when the first housing and the second housing are vertically adjacent; and a first flat portion adjacent to the bending portion to form a boundary and a second flat portion disposed to extend from the first flat portion to an edge of the glass layer, wherein the glass layer comprises a glass member, wherein the glass member has a first thickness in the second flat portion, has a second thickness at the center of the bending portion, and has a third thickness less than the first thickness and greater than the second thickness in a section between the first flat portion and the center of the bending portion, and wherein the thickness of the glass member gradually decreases from the first flat portion to the center of the bending portion forming a concave portion.
Abstract:
An electronic device and method are disclosed. The electronic device includes a housing, a flexible display having a variable display area including: a visible first region, and a second region that is stowable/extendable, a display driver integrated circuit (DDI), and a processor. The processor implements the method, including: when the housing is disposed in a first state in which the second region is stowed, control the flexible display to display a user interface (UI) screen through the first region based on a first driving frequency and a first light emission frequency, control the flexible display to display a compensation image through the second region based on a second driving frequency and a second light emission frequency, wherein the second driving frequency is equal to or less than the first driving frequency, and the second light emission frequency is less than the first light emission frequency.
Abstract:
An electronic device is provided. The electronic device includes a display including a plurality of display pixels, a memory, and at least one processor, wherein the at least one processor may be configured to drive the display by variably adjusting a first display region and a second display region in which visual information is to be displayed on the display, based on an operation state or a display structure state of the electronic device, calculate a difference in usage of the display between the first display region and the second display region, variably determine a size of a boundary compensation region between the first display region and the second display region, based on the difference in usage, and compensate for an image of the boundary compensation region.
Abstract:
An electronic device includes a housing including a first surface facing a first direction and a second surface facing a second direction opposite to the first direction; a transparent substrate forming at least a portion of the first surface; a display disposed between the transparent substrate and the second surface of the housing and including a third surface facing the first direction and a fourth surface facing the second direction; at least one sensor disposed between a portion of the second surface of the display and a portion of the second surface of the housing; an electrical structure disposed between the sensor and a portion of the second surface of the housing; and a control circuit electrically connected to the electrical structure, wherein the control circuit detects an electrical signal occurring by a pressure from the second direction to a portion of the transparent substrate using the electrical structure.
Abstract:
Disclosed is an electronic device including a display, a display driving circuit which drives the display, and at least one processor operationally connected to the display or the display driving circuit, wherein the at least one processor gives an afterimage risk ranking to each of a plurality of applications, and, when an application given an afterimage risk ranking higher than a designated range among the plurality of applications is executed, generates afterimage data by accumulating images sampled from the execution screens of the application given the afterimage risk ranking higher than the designated range, and delivers the afterimage data to the display driving circuit. Various other embodiments that can be understood through the present specification are also possible.
Abstract:
An electronic device is provided. The electronic device includes a display including a sensor area in at least a part of the display, a sensor module disposed under the sensor area, and a processor operatively connected with the display and the sensor module. The display includes a screen area surrounding the sensor area. At least one pixel electrode included in the sensor area is disposed differently from pixel electrodes included in the screen area.
Abstract:
According to various embodiments, an electronic device may include a first structure including a first plate including a first surface and a second surface facing away from the first surface, and at least one side surface, a second structure including a second plate facing the second surface of the first plate; a first side wall extended to the second plate; a second side wall extending to the first side wall and the second plate and facing the side surface; and a third side wall extending to the first side wall and the second plate, parallel to the second side wall and facing the side surface, wherein the second plate, the first side wall, and the second side wall and the third side wall together form a trough with one side opened to receive at least part of the first structure, the first structure is movable between an open state and a closed state with respect to the second structure in a first direction parallel to the second plate and the second side wall, and the first structure is placed at a first distance from the first side wall in the closed state, and placed at a second distance which is greater than the first distance from the first side wall in the open state, at least one mechanical button mounted on the second side wall, and moving toward the first structure from outside of the second structure, and a sensing circuit disposed between the side wall and the second side wall with at least partial area, and configured to detect the movement of the mechanical button. Besides, various embodiments are possible.
Abstract:
An electronic device is configured to perform a method of previewing images photographed by a plurality of cameras. The method includes displaying a main preview image of a first one of the cameras, and displaying a sub preview image of a second one of the cameras in the main preview image; changing a property of the sub preview image in response to movement of the electronic device; and when the movement of the electronic device stops, restoring the changed property to an original property before the changing.
Abstract:
An electronic device is configured to perform a method of previewing images photographed by a plurality of cameras. The method includes displaying a main preview image of a first one of the cameras, and displaying a sub preview image of a second one of the cameras in the main preview image; changing a property of the sub preview image in response to movement of the electronic device; and when the movement of the electronic device stops, restoring the changed property to an original property before the changing.
Abstract:
An electronic device is disclosed, including a first housing with a first support member, a second housing foldably coupled to the first housing through a hinge mechanism and including a second support member, a flexible display supported by the first housing and the second housing, the flexible display including: a window layer, a display panel disposed under the window layer, and a bending portion extended from the display panel and attached to a rear surface of the display panel, the bending portion including: an extension portion and a control circuit and a flexible substrate, a first waterproof member, a second waterproof member, and a third waterproof member that connects the first waterproof member and second waterproof member, wherein when the flexible display is viewed from above, the control circuit and the flexible substrate overlap a first waterproof space formed through the first, second and third waterproof member.