Abstract:
A quantum dot including a first ligand and a second ligand on a surface of the quantum dot, a composition or composite including the same, and a device including the same. The first ligand includes a compound represented by Chemical Formula 1 and the second ligand includes a compound represented by Chemical Formula 2: MAn Chemical Formula 1 wherein M, n, and A are the same as defined in the specification; and wherein, R1, L1, Y1, R, k1, and k2 are the same as defined in the specification.
Abstract:
A photosensitive composition, a quantum dot polymer composite pattern prepared therefrom, and a layered structure and an electronic device including the same. The photosensitive composition includes plurality of quantum dots; a luminescent material other than a quantum dot; a carboxylic acid group containing binder; a photopolymerizable monomer having a carbon-carbon double bond; and a photoinitiator, and the luminescent material comprises a fluorophore, a nanosized inorganic phosphor, or a combination thereof.
Abstract:
A layered structure including a luminescent layer including a quantum dot polymer composite pattern; an inorganic layer disposed on the luminescent layer, the inorganic layer including a metal oxide, a metal nitride, a metal oxynitride, a metal sulfide, or a combination thereof; and an organic layer being disposed between the luminescent layer and the inorganic layer, the organic layer including an organic polymer, a method of producing the same, and a liquid crystal display including the same. The quantum dot polymer composite pattern includes a repeating section including a polymer matrix; and a plurality of quantum dots (e.g., dispersed) in the polymer matrix, the repeating unit including a first section configured to emit light of a first light, and wherein the inorganic layer is disposed on at least a portion of a surface of the repeating section.
Abstract:
A light emitting device including a semiconductor nanocrystal and a ligand bound to a surface of the semiconductor nanocrystal, wherein the ligand includes an organic thiol ligand or a salt thereof and a polyvalent metal compound including a metal including Zn, In, Ga, Mg, Ca, Sc, Sn, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Sr, Y, Zr, Nb, Mo, Cd, Ba, Au, Hg, Tl, or a combination thereof, and a display device including the light emitting device.
Abstract:
A quantum dot including a first ligand and a second ligand on a surface of the quantum dot, a composition or composite including the same, and a device including the same. The first ligand includes a compound represented by Chemical Formula 1 and the second ligand includes a compound represented by Chemical Formula 2: MAn Chemical Formula 1 wherein M, n, and A are the same as defined in the specification; and wherein, R1, L1, Y1, R, k1, and k2 are the same as defined in the specification.
Abstract:
A photosensitive composition includes a plurality of quantum dots including an organic ligand on the surface thereof; a binder; a photopolymerizable monomer composition; photoinitiator; and a solvent, wherein the photopolymerizable monomer includes a main monomer having 1 to 6 carbon-carbon double bonds, a first accessory monomer having 8 to 20 carbon-carbon double bonds, and a second accessory monomer represented by Chemical Formula A; and a method of preparing the photosensitive composition and a quantum dot-polymer composite pattern prepared therefrom are provided: R1O-(L1)m-L3-A-L4-(L2)n-OR2 Chemical Formula A wherein, A, L1, L2, L3, L4, R1, and R2 are the same as defined herein.
Abstract:
A film for a backlight unit including a semiconductor nanocrystal-polymer composite film including a semiconductor nanocrystal and a matrix polymer in which the semiconductor nanocrystal is dispersed, wherein the matrix polymer is a polymer produced by a polymerization of a multifunctional photo-curable oligomer, a mono-functional photo-curable monomer, and a multifunctional photo-curable cross-linking agent, the multifunctional photo-curable oligomer has an acid value of less than or equal to about 0.1 mg of KOH/g, and a content (A1) of a first structural unit derived from the multifunctional photo-curable oligomer, a content (A2) of a second structural unit derived from the mono-functional photo-curable monomer, and a content (A3) of a third structural unit derived from the multifunctional photo-curable cross-linking agent satisfy Equation 1: A1
Abstract:
A photosensitive composition including: a plurality of quantum dots, wherein the quantum dot includes an organic ligand with a hydrophobic moiety bound to a surface of the quantum dot; a binder; a photopolymerizable monomer having a carbon-carbon double bond; a photoinitiator; and a solvent, wherein the binder includes a multiple aromatic ring-containing polymer including a main chain including a carboxylic acid group and a backbone structure incorporated in the main chain, wherein the backbone structure includes a quaternary carbon atom, which is a part of a cyclic group, and two aromatic rings bound to the quaternary carbon atom, and wherein the plurality of quantum dots are dispersed in the binder.
Abstract:
Disclosed are a conjugate of a metal nanoparticle including a magnetic core and at least one light emitting material linked to the metal nanoparticle through a linker, wherein the linker has an affinity for a biological material and has changed structure after contacting a biological material, a biosensor including the conjugate, and a method of measuring a concentration of specific biological material in a biological sample using the conjugate or the biosensor.
Abstract:
Disclosed herein is a quantum dot phosphor for light emitting diodes, which includes quantum dots and a solid substrate on which the quantum dots are supported. Also, a method of preparing the quantum dot phosphor is provided. Since the quantum dot phosphor of the current invention is composed of the quantum dots supported on the solid substrate, the quantum dots do not aggregate when dispensing a paste obtained by mixing the quantum dots with a paste resin for use in packaging of a light emitting diode. Thereby, a light emitting diode able to maintain excellent light emitting efficiency can be manufactured.