Abstract:
A communication method and system for converging a fifth generation (5G) communication system for supporting higher data rates beyond a fourth generation (4G) system with a technology for Internet of things (IoT) are provided. The communication method and system may be applied to intelligent services based on the 5G communication technology and the IoT-related technology, such as smart home, smart building, smart city, smart car, connected car, health care, digital education, smart retail, security and safety services.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system such as Long Term Evolution (LTE). An embodiment of the present disclosure relates to a method for operating a terminal, which includes receiving timing advance (TA) information related to an interference, determining whether to apply the TA information related to the interference, and transmitting uplink data based on the TA information related to the interference, and the terminal performing the same. Further, the present disclosure relates to a method and an apparatus for operating a base station operating with the terminal.
Abstract:
The present disclosure relates to a 5G or a pre-5G communication system for supporting a higher data rate following 4G communication systems such as LTE. In accordance with an embodiment of the present disclosure, a method of a base station includes: checking an operation mode depending on whether beam sweeping is supported, transmitting a signal related to the operation mode to a terminal, and performing communication with the terminal according to the operation mode.
Abstract:
The present disclosure relates to a pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates beyond 4th-generation (4G) communication system, such as long term evolution (LTE). To support multiple access, a method for operating a terminal is provided. The method includes sending at least one first reference signal over a first resource which supports orthogonal multiple access with at least one other terminal, sending at least one second reference signal over a second resource which supports non-orthogonal multiple access (NOMA) with the at least one other terminal, and sending a data signal according to the NOMA with the at least one other terminal.
Abstract:
Disclosed are a method and an apparatus for estimating channel information. A terminal estimates a channel coefficient for each of subcarriers included in each symbol of the received signals, calculates power of the received signal matched to each of the subcarriers, calculates an interference estimation parameter for each of the subcarriers based on the power of the received signal matched to each of the subcarriers and based on power of a channel coefficient for a subcarrier on which the received signal has maximum power among the subcarriers, and calculates a non-Gaussian characteristic parameter of an interference signal related to the received signals based on the interference estimation parameters calculated for the subcarriers of all the symbols of the received signals.
Abstract:
The present disclosure relates to a 5G or pre-5G communication system to be provided to support a higher data transmission rate since 4G communication systems like LTE. The present disclosure relates to a method for providing control information for different services of a base station. A method of a first terminal includes: receiving control information; identifying a control channel for the first terminal based on the control information; and decoding information received in the control channel for the first terminal based on superposition transmission related information included in the control information.
Abstract:
The present disclosure relates to 5G or pre-5G communication systems capable of achieving much higher data rates than 4G communication systems like LTE systems. A method for a base station to provide different services may include determining overlap related information for a first terminal of a first system employing a first transmission time interval (TTI) and a second terminal of a second system employing a second TTI different from the first TTI. The method may also include transmitting scheduling information containing the overlap related information to the first terminal and the second terminal and transmitting data to the first terminal and the second terminal based on the overlap related information.
Abstract:
A method and an apparatus for detecting inter-cell interference in a mobile communication system are provided. A base station receives a reference signal (RS) from a terminal, generate one or more interference candidate RSs, calculate a cross correlation of the one or more interference candidate RSs and the received RS, estimate at least one of a size of a Resource Block (RB) an offset of the RB, a group index (U), and a cyclic shift (CS) by using a preset number of interference candidate RSs in an order of the large cross correlation. The base station further removes an interference signal or performs a direct reduction by using at least one of the estimated RB size, the RB offset, the timing offset, and the group index (U). According to the present disclosure, it is beneficial to mitigate or cancel inter-cell interference problem on an uplink transmission without any assistance of neighbor base stations and/or adjacent cells in a wireless communication system.
Abstract:
A pre-5th-Generation (5G) or 5G communication system to be provided for supporting higher data rates Beyond 4th-Generation (4G) communication system, such as long term evolution (LTE). A user equipment (UE) in a wireless communication system is provided. The UE includes a transceiver, and at least one processor coupled to the transceiver and configured to generate a lone truncated buffer status report (BSR) based on a number of padding bits, and transmit the long truncated BSR informing of data volume for at least one logical channel group among logical channel groups having data for transmission, wherein the data volume for the at least one logical channel group is reported following an order that is determined based on a highest priority logical channel in each of the at least one logical channel group.
Abstract:
The present disclosure relates to a method and device for providing different services in a mobile communication system. In an embodiment, a base station sets interference influence information including information about interference of a second signal of a second system using a second TTI with regard to a first signal of a first system using a first transmission time interval (TTI). Also, the base station transmits the first signal of the first system to a terminal, and transmits the interference influence information to the terminal in a predetermined time. In a situation where different services coexist, an HARQ retransmission technique is provided for effectively overcoming a transmission failure caused by influence of interference between services.