Abstract:
A fabricating method for a semiconductor package is proposed, in which a chip carrier accommodates at least one semiconductor chip, which is attached with an interface layer formed on a covering module plate consisting of at least one covering plate, while the interface layer is poor in adhesion to the chip and a molding compound used for forming an encapsulant. So that after completing molding, ball implantation and singulation processes, the interface layer, the covering plate and a portion of the encapsulant formed on the covering plate can be easily removed by heating the singulated semiconductor package. This allows the molding compound not to flash on the chip, and prevents the chip from being damaged by stress generated in the molding process.
Abstract:
A substrate of a semiconductor package is proposed, which is formed with a strip copper layer on a core layer of the substrate, wherein a solder mask is arranged to cover the core layer and two lengthwise sides of the copper layer by a width between 0.1 mm to 1.0 mm, while a surface between the sides of the copper layer is exposed by forming a groove opening to the atmosphere and plated with gold. This makes bulges generated by shrinkage of the solder mask covering the sides of the copper layer extend outwardly in a direction away from the groove opening, allowing clamping force to be sufficiently exerted on the substrate by a mold during an encapsulation process. As such, after completing the encapsulation process, an encapsulating resin remained in the runner can be easily removed without damaging the substrate, and also resin flash can be prevented from occurrence.
Abstract:
An improved encapsulation method is proposed for the encapsulation of a substrate-based package assembly, which can help to prevent mold flash over exposed package surfaces after encapsulation process is completed. The proposed encapsulation method is characterized by the forming of a cutaway portion in a solder mask over the substrate along a seam line between the solder mask and the molding tool that would exist between the solder mask and the molding tool when the semi-finished package assembly is fixed in position in the molding tool. During encapsulation process, the cutaway portion defines a constricted flow passage to the injected encapsulation material; and consequently, when the encapsulation material flows into this constricted flow passage, it would more quickly absorb the heat in the molding tool, thereby increasing its viscosity and retarding its flow speed. As a result, the encapsulation material would be less likely to further flow into the seam between the solder mask and the molding tool, thus preventing mold flash over the exposed surface of the solder mask.
Abstract:
A semiconductor package with a heat dissipating structure is provided. The heat dissipating structure includes a flat portion, and a plurality of support portions formed at edge corners of the flat portion for supporting the flat portion above a chip mounted on a substrate. The support portions are mounted at predetermined area on the substrate without interfering with arrangement of the chip and bonding wires that electrically connect the chip to the substrate. The support portions are arranged to form a space embraced by adjacent supports and the flat portion, so as to allow the bonding wires to pass through the space to reach area on the substrate outside coverage of the heat dissipating structure; besides, passive components or other electronic components can be mounted on the substrate at area within or outside the coverage of the heat dissipating structure, thereby improving flexibility in component arrangement in the semiconductor package.
Abstract:
A semiconductor package having a lead frame formed with a die pad and a plurality of conductive leads, wherein the die pad is formed with a plurality of tabs to impede the resin flow below the die pad such that a downward pressure is produced because the resin flow above the die pad moves at a speed faster than that below the die pad. As a result, the tab is urged against a bottom surface of a mold cavity during a transfer molding process so as to prevent the die pad from being exposed to an encapsulant for encapsulating the die pad and a semiconductor die mounted on the die pad.
Abstract:
A semiconductor chip package is formed to be capable of reducing moisture erosion by configuring the bonding finger, the plating-conduction-line, and the trace on the chip carrier therein in such a way that the length of path for moisture to penetrate and to reach the bonding finger through a plating-conduction-line is significantly longer than those implemented in a conventional chip package.
Abstract:
A substrate and a fabrication method thereof are proposed, with at least a check point being formed on the substrate. Prior to wire bonding and/or molding processes, cleanness of the substrate (cleaned by plasma) is determined according to color variation of the check point, so as to allow only cleaned and contamination-free substrates to be subsequently formed with bonding wires and encapsulants thereon. Thereby, qualities of wire-bonded electrical connection and encapsulant adhesion for the substrate can be assured, which helps prevent the occurrence of delamination between the encapsulant and the substrate. Moreover, the check point formed on the substrate is made during general substrate fabrication by using current equipment and technique, and in a manner as not to interfere with trace routability on the substrate; thereby, costs and complexity of substrate fabrication would not undesirably increased.
Abstract:
A heat sink with a collapse structure and a semiconductor device with the heat sink are proposed, in which the heat sink is in ladder-like shape due to a height difference formed between an extending portion and an body of the heat sink, and the body has at least one surface exposed to outside of the semiconductor package. The extending portion produces collapse deformation in response to stress from engagement of molds in a molding process, so as to prevent a semiconductor chip from being damaged by the stress. The heat sink directly attached to the chip allows heat generated by the chip to pass through the extending portion to the body of the heat sink, and then the heat can be dissipated through the exposed surface of the body to the outside of the semiconductor package, so as to improve the heat dissipating efficiency.
Abstract:
A semiconductor package is proposed, in which at least one chip is mounted on a substrate, and at least one die-attach region is formed on the substrate. A plurality of thermal vias formed in the die-attach region and penetrating the substrate, in a manner that the thermal vias each has a top end connected to the chip mounted on the substrate and a bottom end connected to a thermal pad formed beneath the substrate at a position corresponding to the die-attach region. The thermal pad has a surface directly exposed to the atmosphere, allowing heat generated by the chip to be dissipated through the thermal vias and the exposed surface of the thermal pad to the atmosphere, so as to significantly improve heat dissipating efficiency for the semiconductor package.
Abstract:
A QFN (Quad Flat Non-leaded) semiconductor packaging technology is proposed, which can be used to package a semiconductor chip of a central-pad type having at least one row of bond pads arranged along a center line on one surface of the semiconductor chip. The proposed semiconductor packaging technology is based on a specially-designed leadframe which is formed with a plurality of leads, a chip-support-and-grounding structure, and at least one ground wing; wherein the chip-support-and-grounding structure serves both as a die pad and a ground bus for the packaged chip, and the ground wing is electrically linked to the chip-support-and-grounding structure. After encapsulation process is completed, the ground wing as well as the outer lead portions are exposed to the bottom outside of the encapsulation body, which can be then bonded a PCB's ground plane during SMT (Surface Mount Technology) process, thus enhancing the grounding effect and the electrical performance of the packaged chip during operation.