Abstract:
Described examples include a projector including a first prism having a dichroic layer. A second prism has a first spatial light modulator on a first surface, and a first light source directed through a second surface of the second prism to the first spatial light modulator. The first spatial light modulator is operable to modulate the first light to provide modulated first light that is reflected off the second surface of the second prism and the dichroic layer to projection optics. A third prism has a second spatial light modulator on a first surface and a second light source directed through a second surface to the second spatial light modulator. The second spatial light modulator is operable to modulate the second light to provide modulated second light that is reflected off the second surface of the third prism and passes through the dichroic layer to the projection optics.
Abstract:
A projector includes a semiconductor die including a digital micromirror device; and a first integral optical layer attached to the semiconductor die. The first integral optical layer includes a first optical lens and a first diffractive optical element. A second integral optical layer is attached to the first integral optical layer. The second integral optical layer includes an aperture stop and a second diffractive optical element. A third integral optical layer is attached to the second integral optical layer. The third integral optical layer includes a second optical lens and a light source mount. The semiconductor die, the first integral optical layer, the second integral optical layer and the third integral optical layer are stacked to form an optical path through the first and second diffractive optical elements, reflect off the digital micromirror device, and pass through the first optical lens, the aperture stop and the second lens.
Abstract:
An embodiment of an apparatus for image projection includes a laser providing a first color light, a plurality of dichroic polarizing beam splitters (DPBSs), a plurality of switchable half-wave plates paired with a respective DPBS and positioned between the laser and the respective DPBS, a quarter-wave plate backed by a mirror and positioned to receive a first beam from a respective DPBS, and a plurality of static phosphor devices that are each positioned to receive either the first beam or the second beam from a respective DPBS and to emit light in a respective color. The emitted light from the phosphor devices and the beam that is reflected from the mirror are directed towards an output by one or more respective DPBSs. A method switches the switchable half-wave plates as necessary to provide separate images in a plurality of colors.
Abstract:
In described examples, a body includes an opening in a central portion of a surface, a cavity having sides extending from the opening into the body, and a bottom surface within the body supporting a phosphor configured to emit light when energized by incoming light. In a further arrangement, the sides are tapered from the opening to the bottom surface, such that a cross sectional area of the opening is greater than a cross sectional area of the bottom surface.
Abstract:
An apparatus includes a light source to generate source light through an optically transmissive medium to an object. A receiver includes a near zone light sensor and a far zone light sensor positioned on a substrate with the light source. The near zone light sensor is positioned on the substrate to, in response to the generated source light, receive reflected source light from the object and the optically transmissive medium. The far zone light sensor is positioned on the substrate to, in response to the source light, receive the reflected source light from the object and to receive a reduced quantity of the reflected source light from the optically transmissive medium compared to the near zone light sensor.