Abstract:
A tool includes a head that extends form the flexible section, an emitter within the head; and a nozzle to eject a cooling fluid therefrom. A method of additively manufacturing a component including delivering series of thermal shocks to a conglomerated powder within an internal passage of an additively manufactured component to facilitate removal of the conglomerated powder.
Abstract:
A method is provided for additive manufacturing. This method includes monitoring a current to a recoater blade. The monitored current is compared to a predetermined current. An operation is initiated in response to the monitored current exceeding the predetermined current. Another method for additive manufacturing includes comparing a movement of a recoater blade to an expected movement. A single exposure sequence is initiated in response to movement of the recoater blade being different than an expected movement. An additive manufacturing system is also provided which includes a recoated blade and a control. The control is operable to identify resistance to movement of the recoater blade.
Abstract:
A tube assembly that may be for a fuel nozzle of a fuel system of a gas turbine engine may have a first tube defining a first flowpath along a centerline, a second tube generally spaced radially outward from the first tube with a first void located between and defined by the first and second tubes, and a support structure located in the first void and extending between the first and second tubes. The support structure is constructed and arranged to minimize or eliminate thermal conduction between the tubes. The entire assembly may be additive manufactured as one unitary piece. One example of a method of operation may include designed-for breakage of the structural support due to thermal stresses thereby further minimizing thermal conduction between tubes.
Abstract:
A ceramic component retention system includes a metallic component, a ceramic component, and at least one spring element arranged between the metallic component and the ceramic component. The metallic component has a first coefficient of thermal expansion, and the ceramic component has a second coefficient of thermal expansion. The at least one spring element is configured to mechanically couple the ceramic component to the metallic component.
Abstract:
A method includes building a tubular object by a layer-by-layer additive manufacturing process. A structure integrally connected to the tubular object for supporting a portion of the tubular object is formed during building of the tubular object. The structure provides vibration dampening, heat shielding, heat transfer, stiffening, energy absorption, or mounting after the tubular object is built.
Abstract:
A method is provided involving an additive manufacturing system. This method includes a step of forming a first fluid conduit using the additive manufacturing system. The method also includes a step of providing a fluid coupling. The fluid coupling includes the first fluid conduit and a second fluid conduit. The first fluid conduit is connected to and fluidly coupled with the second fluid conduit. The first fluid conduit has a first configuration. The second fluid conduit has a second configuration that is different than the first configuration.
Abstract:
A multi-component fastener is provided having a body and a sleeve. The body has a shank that extends lengthwise between a head and a distal end. The shank includes a first outer surface. The body includes a first material. The sleeve has a wall defined by an outer surface and an inner surface. The inner surface defines an interior cavity. The wall extends lengthwise between a first end and a second end. At least a portion of the sleeve outer surface contiguous with the first end is threaded. The sleeve includes a second material that is dissimilar to the first material. A portion of the shank including the distal end is disposed within the interior cavity of the sleeve. The sleeve and the shank are fixed to one another.
Abstract:
A method of forming an object includes installing multiple foil drums within a processing chamber of an ultrasonic consolidation system. The multiple foil drums each include different materials than the other foil drums. The multiple foil drums are positioned so that one of the foils is selected to be placed on top of the build platform. The selected foil is welded onto the build platform or onto a previously processed layer. A portion of the welded foil is then cut. The multiple foil drums are retracted away from the build platform. The portion of the welded foil that was just cut is then consolidated to the object. The build platform is incrementally lowered before the process is repeated to form the next layer of the object.
Abstract:
An embodiment of an apparatus includes a centrifugal drive unit, an arm assembly, an optional dynamic balancing ring, and a workpiece fixture. The arm assembly is operatively connected to the centrifugal drive unit and configured to revolve about a primary axis perpendicular to the arm. The workpiece fixture is mounted to the arm assembly, and is configured to rotate at least one workpiece about at least one secondary axis outboard of the primary axis.
Abstract:
A damper-seal assembly for a gas turbine engine includes an additively manufactured seal and an additively manufactured damper inseparably assembled with the additively manufactured seal.