Abstract:
A three-dimensional barcode comprising a three-dimensional barcode structure, at least a part of which is printed on a surface of an object. The barcode structure includes encoded information, and at least part of the encoded information is embedded in a z-dimension perpendicular to the surface of the object.
Abstract:
A method of manufacturing a three-dimensional object operates a platen configured to facilitate the release of objects produced by a three-dimensional object printer. The method includes moving a first plate and a second plate to form a platen, the first plate having a plurality of parallel members and the second plate having a plurality of parallel members, the first plate and the second plate being moved to interlock the plurality of parallel members of the first plate with the plurality of parallel members of the second plate to form the platen, at least one of the first plate and the second plate being independently movable. At least one of the first plate and second plate is moved to release a three-dimensional object formed by the printer from the platen.
Abstract:
A printing system includes a housing, a track supported by the housing, and a cart which rides along the track. The printing system also includes print heads which eject material onto the cart. To prevent material from inadvertently accumulating on the track and the housing, the cart also includes a wiper configured to wipe the material from at least a portion of the housing. The printing system also includes at least one collection tray configured to direct and/or collect the material wiped from the housing. The printing system further includes a coating applied to outer surfaces of at least some of the elements of the housing, the track, and the cart to further prevent the material from inadvertently accumulating on the track and the housing. The coating can be a siloxyfluorocarbon coating.
Abstract:
Embossing methods and systems include a substrate (e.g., a sheet of paper or other material) delivered through a rendering device (e.g., a printer). An array of time-delayed pins can be driven into the substrate as the substrate travels through an in-line path provided by the rendering device to produce a latent embossed image composed of a combination of shapes depressed in the substrate. An ATA (Acoustic Transfer Assist) system can transfer an image to the substrate. The substrate with the latent embossed image is then transferred to the ATA system and the substrate is rendered with an embossed image based on the latent embossed image.
Abstract:
A cart that moves through a three-dimensional object printing system includes a platform and a cleaning device configured to remove material from a surface as the platform passes the surface. The cart further includes a rechargeable power supply configured to be connected to the cleaning device. A controller onboard the cart is operatively connected to the rechargeable power supply and the cleaning device. The controller is configured to connect the rechargeable power supply to the cleaning device and operate the cleaning device to clean the surface.
Abstract:
A printing system includes a housing, a track supported by the housing, and a cart which rides along the track. The printing system also includes print heads which eject material onto the cart. To prevent material from inadvertently accumulating on the track and the housing, the cart also includes a wiper configured to wipe the material from at least a portion of the housing. The printing system also includes at least one collection tray configured to direct and/or collect the material wiped from the housing. The printing system further includes a coating applied to outer surfaces of at least some of the elements of the housing, the track, and the cart to further prevent the material from inadvertently accumulating on the track and the housing. The coating can be a siloxyfluorocarbon coating.
Abstract:
A system that includes a three-dimensional (3D) printing device, processor and computer-readable memory a 3D barcode and prints a three-dimensional object containing information embedded in the 3D barcode by: (i) receiving information to be embedded in the 3D barcode; (ii) determining a barcode symbology, wherein the barcode symbology includes at least one symbol character in a z-dimension; (iii) generating a build sequence that will cause the 3D-printing device to print the 3D barcode that embeds the received information in the 3D barcode in accordance with the barcode symbology; and (iv) using the build sequence to print the 3D object so that each symbol character of the symbology that is to appear in the z-dimension is printed as a physical representation in the z-direction on the 3D object.
Abstract:
What is disclosed is an apparatus and method for inhibiting the formation of sediment in an ink sub-tank of a MICR inkjet printer. In one embodiment, the present apparatus comprises an ink sub-tank containing MICR ink substantially comprising a ferrofluid of particles, and an electromagnet. When the MICR inkjet printer is turned OFF, the electromagnet is lowered into a chamber inside the ink sub-tank and an electric current is applied to activate the electromagnet. Activation of the electromagnet causes the particles of the ferrofluid to be attracted to the electromagnet's magnetic field such that the particles are lifted off a bottom of the sub-tank to inhibit sediment formation thereon. The electromagnet is de-activated when the MICR inkjet printer is turned OFF. A sensor is employed to activate the electromagnet when sediment in the ink sub-tank has reached a pre-determined level.
Abstract:
A melting device melts solid ink into liquid ink by passing alternating current through an electrical conductor arranged in coils around a housing. The liquid ink passes from a reservoir, through a spool valve arrangement, and into first and second chambers. The spool valve arrangement only allows liquid ink into one chamber at a time. While the first chamber is being filled, pressure is applied to the second chamber. The pressure applied to the second chamber forces the liquid ink in the second chamber through a filter and an outlet. When the first chamber is filled to a predetermined level, pressure is no longer applied to the second chamber and is applied to the first chamber. The pressure applied to the first chamber moves the spool valve arrangement to block the first chamber. While pressure is applied to the first chamber, the second chamber is filled with liquid ink.
Abstract:
Systems and methods for printing a three-dimensional object containing information embedded as three-dimensional physical representations are disclosed. The methods include receiving information to be embedded in the three-dimensional object, determining a mapping between the received information and a plurality of three-dimensional physical representations to be embedded in the three-dimensional object, generating a build sequence that will cause the three-dimensional printing device to print the three-dimensional object comprising the plurality of three-dimensional physical representations in accordance with the mapping. The three-dimensional printing device uses the build sequence to print the three-dimensional object comprising the plurality of three-dimensional physical representations.