Abstract:
The present disclosure is directed to a process black ink composition for digital offset printing including a cyan colorant including a cyan pigment, a magenta colorant including a magenta pigment and a yellow colorant including a yellow pigment, wherein the process black ink composition includes a total amount of pigment of at least about 15 wt %, a photo-initiator a dispersant, and a curable ink vehicle component including at least one component selected from a curable monomer or a curable oligomer; wherein the process black ink composition comprises a ratio of the cyan colorant to the yellow colorant of 0.70-0.80:1.0 and a ratio of the magenta colorant to the yellow colorant of 0.90-0.80:1.0, and wherein the process black ink composition does not comprise carbon black. Methods of preparing the present process black ink composition and using the process black ink composition are also provided.
Abstract:
Disclosed herein are sacrificial coating compositions comprising at least one polyvinyl alcohol; at least one waxy starch; at least one hygroscopic agent; at least one surfactant; and water, wherein the ratio by weight of the at least one waxy starch to the at least one polyvinyl alcohol is at least two to one. In certain embodiments, the at least one polyvinyl alcohol has a degree of hydrolysis of at least about 95%, such as at least about 98%, or at least about 99.3%. In certain embodiments, the viscosity of the at least one polyvinyl alcohol in a deionized water solution at 20° C. ranges from about 30 cps to about 80 cps, wherein the solution contains 4% by weight polyvinyl alcohol relative to the total weight of polyvinyl alcohol and deionized water in the solution. Also disclosed herein are methods of making a sacrificial coating composition.
Abstract:
An aqueous sacrificial coating composition for an image transfer member in an aqueous ink imaging system is provided. The sacrificial coating composition may include at least one polymer, at least one selected from (i) at least one chain extender, or (ii) a reactive elastomeric latex, wherein the at least one chain extender comprises a species capable of linking linear chains or chain segments of the reactive elastomeric latex, at least one hygroscopic plasticizer, and at least one surfactant.
Abstract:
A method of making a sacrificial coating composition is disclosed. The method comprises emulsifying an oil with surfactant to form an oil-in-water emulsion; and combining ingredients comprising (i) at least one polymer, (ii) at least one hygroscopic material, (iii) the oil-in water emulsion and (iv) water to produce the sacrificial coating composition. The at least one polymer is selected from the group consisting of a hydrophilic polymer, a latex comprising polymer particles dispersed in a continuous liquid phase, or mixtures thereof.
Abstract:
An aqueous inkjet ink includes a latex having a bimodal molecular weight distribution. A method of making an aqueous inkjet ink includes adding a dispersion of surfactant and carbon black to a reactor, adding a latex having a bimodal molecular weight to the reactor resulting in a reaction mixture, and homogenizing the reaction mixture, forming the ink. A method of printing an image to a substrate includes applying an aqueous inkjet ink onto an intermediate receiving member using an inkjet printhead, spreading the ink onto the intermediate receiving member, inducing a property change of the ink, and transferring the ink to a substrate, wherein the ink includes a latex having a bimodal weight distribution.
Abstract:
Described herein is a method and apparatus for ink jet printing. The method includes providing a wetting enhancement coating on a transfer member. The wetting enhancement coating (WEC) includes water, an acid treated, waxy maize cationic starch, a humectant and a surfactant. The wetting enhancement coating is dried or semi-dried to form a film. Ink droplets are ejected onto the film to form an ink image on the film. The ink image is dried and the ink image and film are transferred to a recording medium.
Abstract:
A process for preparing an aqueous ink composition including 1) preparing a colorant concentrate; 2) preparing a colorant wax dispersion by (a) melting and mixing a dry colorant with at least one wax to form a colorant concentrate, wherein the colorant concentrate contains at least 25 percent by weight of colorant; (b) milling the colorant concentrate of step (a) to form a milled colorant concentrate; (c) combining the milled colorant concentrate of (b) with water and dispersing to form a colorant wax dispersion comprising a plurality of colorant wax particles comprising a colorant core surrounded by a wax shell, wherein the colorant wax particles exhibit a particle size distribution of from about 150 nanometers to less than about 300 nanometers; wherein the melting and mixing of step (a) and the milling of step (b) is done in an immersion media mill; and wherein the combining of step (c) is done using a piston homogenizer; and 3) blending the colorant wax dispersion with an aqueous ink vehicle and optional ink additives to form an aqueous ink composition; and filtering the aqueous ink composition.
Abstract:
A process for preparing a pigmented wax dispersion including (a) melting and mixing a dry pigment with at least one wax to form a pigment concentrate, wherein the pigment concentrate contains at least 25 percent by weight of pigment; (b) milling the pigment concentrate of step (a) to form a milled pigment concentrate; (c) combining the milled pigment concentrate of (b) with water and dispersing to form a pigmented wax dispersion comprising a plurality of pigmented wax particles comprising a pigment core surrounded by a wax shell, wherein the pigmented wax particles exhibit a particle size distribution of from about 150 nanometers to less than about 300 nanometers; wherein the melting and mixing of step (a) and the milling of step (b) is done in an immersion media mill; and wherein the combining of step (c) is done using a piston homogenizer.
Abstract:
A method for forming a three-dimensional object using layer by layer formation of the object through application of stereolithography. More specifically, the formation of a three-dimensional object using a three-dimensional printer based on thermal stereolithography and phase change materials comprising a combination of crystalline and amorphous compounds.
Abstract:
An intermediate transfer member containing a multi-block copolymer containing at least an A block and a B block, wherein the A block has a higher surface energy than the B block, and a method of forming an intermediate transfer member. A method of printing an image to a substrate including applying an ink onto the intermediate receiving member using an inkjet printhead; spreading the ink onto the intermediate receiving member; inducing a property change of the ink; and transferring the ink to a substrate.