Abstract:
Systems and methods involve determination of CRT parameters using a number of CRT optimization processes. Each CRT optimization process attempts to return recommended parameters. The CRT parameters are determined based on the recommended parameters returned by one or more of the CRT optimization processes. The CRT optimization processes may be sequentially implemented and the CRT parameters may be determined based on the recommended parameters returned by a first CRT optimization process to return recommended parameters. The CRT parameters may be determined based on a combination of the recommended parameters returned. The CRT optimization processes implemented may be selected from available CRT optimization processes based on patient conditions.
Abstract:
A pacing system computes optimal cardiac resynchronization pacing parameters using intrinsic conduction intervals. In various embodiments, values for atrio-ventricular delay intervals are each computed as a function of an intrinsic atrio-ventricular interval and a parameter reflective of an interventricular conduction delay. Examples of the parameter reflective of the interventricular conduction delay include QRS width and interval between right and left ventricular senses.
Abstract:
A pacing system for providing optimal hemodynamic cardiac function for parameters such as contractility (peak left ventricle pressure change during systole or LV+dp/dt), or stroke volume (aortic pulse pressure) using system for calculating atrio-ventricular delays for optimal timing of a ventricular pacing pulse. The system providing an option for near optimal pacing of multiple hemodynamic parameters. The system deriving the proper timing using electrical or mechanical events having a predictable relationship with an optimal ventricular pacing timing signal.
Abstract:
A method and system for calculating an atrio-ventricular delay interval based upon an inter-atrial delay exhibited by a patient's heart. The aforementioned atrio-ventricular delay interval may optimize the stroke volume exhibited by a patient's heart. The aforementioned atrio-ventricular delay interval may be blended with another atrio-ventricular delay interval that may optimize another performance characteristic, such as left ventricular contractility. Such blending may include finding an arithmetic mean, geometric mean, or weighted mean of two or more proposed atrio-ventricular delay intervals.
Abstract:
A pacing system for providing optimal hemodynamic cardiac function for parameters such as ventricular synchrony or contractility (peak left ventricle pressure change during systole or LV+dp/dt), or stroke volume (aortic pulse pressure) using system for calculating atrio-ventricular delays for optimal timing of a ventricular pacing pulse. The system providing an option for near optimal pacing of multiple hemodynamic parameters. The system deriving the proper timing using electrical or mechanical events having a predictable relationship with an optimal ventricular pacing timing signal.
Abstract:
A cardiac rhythm management system includes an implantable device executing a dynamic pacing algorithm after an myocardial infarction (MI) event. The dynamic pacing algorithm dynamically adjusts one or more pacing parameters based on a person's gross physical activity level. Examples of the one or more pacing parameters include atrioventricular pacing delays and pacing channels/sites. The dynamic pacing algorithm provides for improved hemodynamic performance when a person's metabolic need is high, and post MI remodeling control when the person's metabolic need is low.
Abstract:
A cardiac rhythm management system modulates the delivery of pacing and/or autonomic neurostimulation pulses based on heart rate variability (HRV). An HRV parameter being a measure of the HRV is produced to indicate a patient's cardiac condition, based on which the delivery of pacing and/or autonomic neurostimulation pulses is started, stopped, adjusted, or optimized. In one embodiment, the HRV parameter is used as a safety check to stop an electrical therapy when it is believed to be potentially harmful to continue the therapy.
Abstract:
A pacing system computes optimal cardiac resynchronization pacing parameters using intrinsic conduction intervals. In various embodiments, values for atrio-ventricular delay intervals are each computed as a function of an intrinsic atrio-ventricular interval and a parameter reflective of an interventricular conduction delay. Examples of the parameter reflective of the interventricular conduction delay include QRS width and interval between right and left ventricular senses.
Abstract:
This document discusses, among other things, a cardiac function management device or other implantable medical device that includes a test mode and a diagnostic mode. During a test mode, the device cycles through various electrode configurations for collecting thoracic impedance data. At least one figure of merit is calculated from the impedance data for each such electrode configuration. In one example, only non-arrhythmic beats are used for computing the figure of merit. A particular electrode configuration is automatically selected using the figure of merit. During a diagnostic mode, the device collects impedance data using the selected electrode configuration. In one example, the figure of merit includes a ratio of a cardiac stroke amplitude and a respiration amplitude. Other examples of the figure of merit are also described.
Abstract:
Cardiac monitoring and/or stimulation methods and systems that provide one or more of monitoring, diagnosing, defibrillation, and pacing. Cardiac signal separation is employed to detect, monitor, track, and/or trend closed-loop cardiac resynchronization therapy using cardiac activation sequence information. Devices and methods involve sensing a plurality of composite cardiac signals using a plurality of electrodes, the electrodes configured for implantation in a patient. A source separation is performed using the sensed plurality of composite cardiac signals, producing one or more cardiac signal vectors associated with all or a portion of one or more cardiac activation sequences. A cardiac resynchronization therapy is adjusted using one or both of the one or more cardiac signal vectors and the signals associated with the one or more cardiac signal vectors. In further embodiments, the cardiac resynchronization therapy may be initiated, terminated, or one or more parameters of the resynchronization therapy may be altered.