Abstract:
Multi-clad optical fibers and fiber amplifiers are disclosed. Various embodiments include multi-clad, large core fiber amplifiers. In various implementations mixing of pump modes is enhanced relative to that obtainable with conventional double-clad fibers. In some embodiments end terminations are provided with increased length of end-cap fiber. In at least one embodiment a multi-clad fiber is provided, with a pump cladding formed by stacking a layer of low index rods in the preform. Various embodiments include a multi-clad fiber amplifier system. The system includes a pump source to pump said fiber amplifier. The system also includes an optical fiber having a core and a cladding, wherein the cladding includes a pump cladding having a corrugated boundary. In various embodiments the pump cladding is formed by rods in a preform, which are disposed to mix the pump modes and/or scatter or reflect pump energy into the core.
Abstract:
A femtosecond laser based laser processing system having a femtosecond laser, frequency conversion optics, beam manipulation optics, target motion control, processing chamber, diagnostic systems and system control modules. The femtosecond laser based laser processing system allows for the utilization of the unique heat control in micromachining, and the system has greater output beam stability, continuously variable repetition rate and unique temporal beam shaping capabilities.
Abstract:
System for converting relatively long pulses from rep-rate variable ultrafast optical sources to shorter, high-energy pulses suitable for sources in high-energy ultrafast lasers. Fibers with positive group velocity dispersion (GVD) and self phase modulation are advantageously employed with the optical sources. These systems take advantage of the need for higher pulse energies at lower repetition rates so that such sources can be cost effective.
Abstract:
The present invention is directed to providing an environmentally stable, ultra-short pulse source. Exemplary embodiments relate to passively modelocked ultra-short fiber lasers which are insensitive to temperature variations and which possess only negligible sensitivity to pressure variations. Further, exemplary embodiments can be implemented in a cost-effective manner which render them commercially practical in unlimited applications. Arbitrary fiber lengths (e.g., on the order of 1 millimeter to 1 kilometer, or greater) can be used to provide an ultra-short pulse with a cost-effective architecture which is commercially practical.
Abstract:
An electronic circuit for controlling a laser system consisting of a pulse source and high power fiber amplifier is disclosed. The circuit is used to control the gain of the high power fiber amplifier system so that the amplified output pulses have predetermined pulse energy as the pulse width and repetition rate of the oscillator are varied. This includes keeping the pulse energy constant when the pulse train is turned on. The circuitry is also used to control the temperature of the high power fiber amplifier pump diode such that the wavelength of the pump diode is held at the optimum absorption wavelength of the fiber amplifier as the diode current is varied. The circuitry also provides a means of protecting the high power fiber amplifier from damage due to a loss of signal from the pulse source or from a pulse-source signal of insufficient injection energy.
Abstract:
Methods for ultrashort pulse laser processing of optically transparent materials. A method for scribing transparent materials uses ultrashort laser pulses to create multiple scribe features with a single pass of the laser beam across the material, with at least one of the scribe features being formed below the surface of the material. This enables clean breaking of transparent materials at a higher speed than conventional techniques. Slightly modifying the ultrashort pulse laser processing conditions produces sub-surface marks. When properly arranged, these marks are clearly visible with side-illumination and not clearly visible without side-illumination. In addition, a method for welding transparent materials uses ultrashort laser pulses to create a bond through localized heating. The ultrashort pulse duration causes nonlinear absorption of the laser radiation, and the high repetition rate of the laser causes pulse-to-pulse accumulation of heat within the materials. The laser is focused near the interface of the materials, generating a high energy fluence at the region to be welded. This minimizes damage to the rest of the material and enables fine weld lines.
Abstract:
By compensating polarization mode-dispersion as well chromatic dispersion in photonic crystal fiber pulse compressors, high pulse energies can be obtained from all-fiber chirped pulse amplification systems. By inducing third-order dispersion in fiber amplifiers via self-phase modulation, the third-order chromatic dispersion from bulk grating pulse compressors can be compensated and the pulse quality of hybrid fiber/bulk chirped pulse amplification systems can be improved. Finally, by amplifying positively chirped pulses in negative dispersion fiber amplifiers, low noise wavelength tunable seed source via anti-Stokes frequency shifting can be obtained.
Abstract:
A method for scribing transparent materials uses ultrashort laser pulses to create multiple scribe features with a single pass of the laser beam across the material, with at least one of the scribe features being formed below the surface of the material. This enables clean breaking of transparent materials at a higher speed than conventional techniques.
Abstract:
Embodiments described herein include a system for producing ultrashort tunable pulses based on ultra broadband OPA or OPG in nonlinear materials. The system parameters such as the nonlinear material, pump wavelengths, quasi-phase matching periods, and temperatures can be selected to utilize the intrinsic dispersion relations for such material to produce bandwidth limited or nearly bandwidth limited pulse compression. Compact high average power sources of short optical pulses tunable in the wavelength range of 1800 to 2100 nm and after frequency doubling in the wavelength range of 900 to 1050 nm can be used as a pump for the ultra broadband OPA or OPG. In certain embodiments, these short pump pulses are obtained from an Er fiber oscillator at about 1550 nm, amplified in Er fiber, Raman-shifted to 1800 to 2100 nm, stretched in a fiber stretcher, and amplified in Tm-doped fiber.
Abstract:
Various embodiments of optical fiber designs and fabrication processes for ultra small core fibers (USCF) are disclosed. In some embodiments, the USCF includes a core that is at least partially surrounded by a region comprising first features. The USCF further includes a second region at least partially surrounding the first region. The second region includes second features. In an embodiment, the first features are smaller than the second features, and the second features have a filling fraction greater than about 90 percent. The first features and/or the second features may include air holes. Embodiments of the USCF may provide dispersion tailoring. Embodiments of the USCF may be used with nonlinear optical devices configured to provide, for example, a frequency comb or a supercontinuum.