Abstract:
A filter assembly includes a filter body, a removable filter cartridge, and a bypass valve with incinerable and non-incinerable portions. The bypass valve includes a valve seat and a movable valve closure element removable with the removable filter cartridge and incinerable. The bypass valve includes a return member remaining in the filter body. A method is provided for controlling bypass valve-opening threshold pressure.
Abstract:
Filter assemblies comprising filter cartridges having a first coupling member including at least one lug having an outer diameter, and a support comprising a second coupling member having at least one channel for receiving the lug, the channel having corresponding channel walls, a terminal section including a closed end and a horizontal axis, and an angled section having an open end, the terminal section including a lug retaining section having a cross-sectional area less than the outer diameter of the lug, methods of coupling the cartridges to the supports, and methods of using the filter assemblies, are disclosed.
Abstract:
A filter including a ring of filter media circumscribing a central cavity, an exit passageway downstream of the central cavity and that has an inlet opening disposed within the central cavity, and a hydrophobic foraminous membrane disk that spans the inlet opening for separating water from fuel passing through the hydrophobic foraminous membrane disk.
Abstract:
The invention relates to an apparatus for separating blood, more particularly an apparatus (1) for absorbing blood (19) and separating blood components, e.g. blood plasma, as a sample liquid (2). Said apparatus (1) comprises a feeding device (13) for absorbing the blood (2), a device (15) for separating blood components as a sample liquid (2), a duct which preferably absorbs the sample liquid (2) exclusively by means of capillary forces, and a device for filling the duct (3) with sample liquid (2) in an inlet or feeding zone (18) of the duct (3). The separating device (15), in particular a membrane, is curved, especially convexly shaped, and the apex of said curved, especially convex shape projects into the filling device.
Abstract:
A filter element may include a tubular member, including a first end portion, with the first end portion being substantially open, at least partially defining an inlet port configured to provide flow communication into a first chamber of the tubular member, and at least partially defining an outlet port configured to provide flow communication from a second chamber. The tubular member may further include a second end portion, with the second end portion being located at an end of the tubular member opposite the first end portion. The tubular member may also include at least one outlet aperture, at least one inlet aperture, and a vent tube extending longitudinally between the first end portion and the second end portion. The vent tube may be configured to provide flow communication between the first end portion and the second end portion of the tubular member.
Abstract:
A fluid filtering apparatus and method may include keyed components to ensure that a correct filter element is being installed into a filter base, and to automatically actuate a fluid valve as the filter element is rotated into place on the base. Tool-less replacement of the element is provided. An embodiment of the element may include inner and outer substantially tubular-shaped media packs disposed about an axis, with one end of each of the inner and outer media packs being attached to an end cap of the element in a manner defining a fluid flow space between the inner and outer media packs for receiving a flow of fluid directed in parallel through the inner and outer media packs. A housing of the filter apparatus may include a flow tube configured to fit into the space between the inner and outer media packs.
Abstract:
A filter element is removably positionable within a filter housing that includes a standpipe extending therewithin and provided with a flow control valve. The filter element comprises a tubular filter media, a first end cap, a second end cap longitudinally spaced from the first end cap, and a center tube extending between the first and second end caps. The center tube has a substantially cylindrical body extending between opposite first and second ends of the center tube. The center tube has at least one inlet opening formed on the cylindrical body and a standpipe opening at the second end thereof adjacent to the second end cap through which the standpipe may be inserted longitudinally into the center tube. The center tube further has at least one actuator key provided to open the flow control valve of the standpipe.
Abstract:
A cartridge filter includes a central core member having an axial dimension including a peripheral surface with a hollow interior, and a pervious filter material disposed about the peripheral surface of the core member. The filter material has a length substantially equal to the axial dimension of the core member and the core is an extruded non-woven tubular member having spaced-apart strand segments providing porous segments thereof. Axial ends of the core include solid band regions providing circumferentially continuous axial ends thereof, to thereby eliminate discrete, irregular edges that otherwise would be created by circumferentially spaced apart strand segments at each axial end of the core if the solid band regions were omitted.
Abstract:
The invention relates to a water separator (10) for water contained in fuel or oil, having a water outlet (30) for the water separated from the fuel or oil and having a water discharge device (32), which comprises an inlet and an outlet opening (34, 36) for the water conveyed out of the water separator (10). According to the invention, the inlet opening (34) is eccentric to the longitudinal axis (20) of the water separator (10) and is arranged on the water separator at an axial distance from the water outlet (30), wherein the outlet opening (36) is arranged on the water separator coaxially to the longitudinal axis (20) of the water separator (10). The invention also relates to a separating system (100) having such a water separator (10).
Abstract:
A filtering device includes multiple filtering elements (3) with bodies defining longitudinal axes. The filtering elements (3) are arranged adjacent to one another in a housing such that the longitudinal axes extend parallel to one another. The bodies of at least some of the filtering elements (3) have a shape that deviates from a circular cylinder at at least one part of the body length. The filtering elements (3) with bodies having a shape deviating from a circular cylinder have a cross-sectional size at least partially changing from one end to the other end. The filtering elements are oriented in the housing such that the regions of a larger cross-section are associated with the regions of a smaller cross-section in adjacent filtering elements.