Abstract:
A piping apparatus is provided, which comprises a strainer comprising a strainer housing including a strainer branch; wherein the strainer housing includes one or more pressure sensors; wherein, when a strainer element is in the strainer branch, at least one pressure sensor of the plurality of pressure sensors is fixed to the strainer housing at a location upstream of the strainer element and/or is fixed to the strainer housing at a location downstream of the strainer element.
Abstract:
A filtering apparatus (100) having a filtering mode and a self-cleaning mode, the apparatus provided for filtering an upstream flowing fluid with filtering elements (20) in the form of a plurality of stackable discs during filtering mode utilizing a first flow direction, apparatus (100) also configured to self-clean the filtering elements (20) the apparatus (100) including an internal fluid diverter (110,210, 310) that is internal to the filter housing. The position of the internal fluid diverter determines the direction of fluid flow through the filter housing and the filter phase. The position of the internal fluid diverter is controlled with a controller disposed external to the filter housing that may be manipulated either manually or by automated means.
Abstract:
A filter monitor system (“FMS”) module is installed on the engine/vehicle and is connected to the filter systems, sensors and devices to monitor various performance parameters. The module also connects to the engine control module (“ECM”) and draws parameters from the ECM. The FMS module is capable of interfacing with various output devices such as a smartphone application, a display monitor, an OEM telematics system or a service technician's tool on a computer. The FMS module consists of hardware and software algorithms which constantly monitor filter systems and provide information to the end-user. FMS module provides necessary inputs and outputs for electronic sensors and devices.
Abstract:
A screen filter for wastewater applications includes a chain tensioning system. The chain tensioning system provides a tensioning force for a screen filter chain. The chain tensioning system includes a chain adjuster device configured to tension the screen filter chain. The chain tensioning system additionally includes a sensor configured to provide a signal representative of a load applied by the chain adjuster; wherein the chain adjuster device is configured to apply a force in a direction that tensions the chain and wherein the signal provided by the sensor is representative of the force.
Abstract:
A heated filter shell assembly for a fuel filtration system includes a filter shell defining a cavity sized to accommodate at least a portion of a fluid filtration cartridge and a cartridge receiving aperture at a first end. A heating element is disposed within the cavity and is operatively coupled to the filter shell adjacent to a second end of the filter shell. A feed wire is operatively coupled to the heating element at a feed wire first end and is configured for electrical energy receiving communication with an energy source at a feed wire second end.
Abstract:
The present technology relates to control systems for use with fluid treatment systems. In one embodiment, for example, a fluid treatment system includes a vessel configured to receive a fluid having one or more constituents and to separate one or more constituents from the fluid. The system can also include a tube extending along at least a portion of the vessel and a sensor. The tube can be in fluid communication with a pressurized air source, and the sensor can be configured to obtain a measurement of an operating parameter. The system can also include a controller in communication with the sensor and pressurized air source. The controller can execute one or more algorithms to determine a filter parameter based on the measurement of the operating parameter, compare the filter parameter to a threshold, and, based on the comparison, activate or deactivate the pressurized air source.
Abstract:
This invention encompasses embodiments for multi-modal integrated simultaneous measurement of various aspects of fluids contained in circulating systems such as automotive reciprocating engines and vehicle transmissions. These circulating systems perform constant internal lubrication, and heat and contaminant removal to protect the internal moving parts from the inherent friction and damage in normal operation. Most commonly this is achieved with fluids based on hydrocarbon and/or related synthetics, which, over time can lose their protective properties, and vary in their performance or breakdown/decay due to internal and external events. Several components within the lubricant fluid can be measured and can provide insight into the efficacy of the system to perform its designed mission. Described herein is a real-time, simultaneous, integrated, multi-modal sensor system for early warning notification that can be further enhanced using specifically designed nanoparticles that can be introduced into the system, engineered to specifically bind with the contaminants and/or undergo an irreversible state change upon certain experienced conditions to both increase the detectability as well as provide for a framework to improve filter performance.
Abstract:
Provided are methods of inhibiting microbial fouling and improving efficiency in biocide dosing in an industrial process containing an aqueous liquid having a biocide demand. In exemplary embodiments, the methods comprise treating an aqueous liquid having a biocide demand with a biocide, monitoring the biocide demand of the aqueous liquid, and filtering a stream of the aqueous liquid. The filtering may be performed in a full-flow or side stream manner.
Abstract:
System and method of recycling grey water, and more particularly a system and method to utilize grey water resulting from a cleaning activity such as a laundry or shower as an environmentally safe form of irrigation. In accordance with one embodiment of said system, pressure sensors and transmitters in various zones may be communicatively coupled to a system controller capable of regulating the use of at least one variable frequency drive with said system.
Abstract:
This invention encompasses embodiments for multi-modal integrated simultaneous measurement of various aspects of fluids contained in circulating systems such as automotive reciprocating engines and vehicle transmissions. These circulating systems perform constant internal lubrication, and heat and contaminant removal to protect the internal moving parts from the inherent friction and damage in normal operation. Most commonly this is achieved with fluids based on hydrocarbon and/or related synthetics, which, over time, can lose their protective properties, and vary in their performance or breakdown/decay due to internal and external events. Several components within the lubricant fluid can be measured and can provide insight into the efficacy of the system to perform its designed mission. Described herein is a real-time, simultaneous, integrated, multi-modal sensor system for early warning notification that can be further enhanced using specifically designed nanoparticles that can be introduced into the system, engineered to specifically bind with the contaminants and/or undergo an irreversible state change upon certain experienced conditions to both increase the detectability as well as provide for a framework to improve filter performance.