Abstract:
A heat exchange system and process for reducing bleed-off are disclosed employing a weak acid cation exchange resin for treating the aqueous liquid coolant. In one such system and process, the aqueous coolant is treated with a weak acid ion exchange resin to remove alkaline salts therefrom without removing salts of strong acids; suspended solids are removed from the circulating aqueous coolant; and an effective amount of additive selected from the group consisting of scale inhibitors, corrosion inhibitors, microbiocides, and mixtures thereof is introduced into the circulating aqueous coolant so that bleed-off from said system is substantially reduced.
Abstract:
Ion exchange techniques are utilized to treat waste water flows, especially those from plating baths, by passing the waste water through a multi-level ion exchange resin bed, the bed thereafter being regenerated by a series of steps, including backwashing, passage of an acidic regeneration fluid through the bed, multi-stage rinsing of the bed, and passage of a caustic regeneration fluid through at least a portion of the bed. Acidic waste flows developed during regeneration steps are, when desired, further treated to recover cyanide values therefrom by heating same within a generally closed tank to drive off a hydrocyanic gas, which is then reacted with caustic within a circulation reactor having an inclined passageway in order to form and recover a cyanide salt liquor suitable for re-use in the plating bath.
Abstract:
An ion exchange resin bed capable of hydraulic segregation into discrete zones of ion exchange resins having different ion exchange functionalities, the resins being produced by functionalizing fractions of a single batch or lot of precursor copolymer which have been segregated on the basis of differing hydraulic densities of the different sized particles, and the method for producing the same.
Abstract:
[Object] To provide a method of purifying nucleic acids where the operation is simple and the nucleic acids can be extracted in a short time with high efficiency.[Solving Means] A method of purifying nucleic acids including the step of adsorbing substances in a sample containing nucleic acids with an ion exchange resin 10 including a positive ion exchange resin and a negative ion exchange resin. As the positive ion exchange resin, a first positive ion exchange resin and a second positive ion exchange resin having an exclusion limit molecular weight lower than that of the first positive ion exchange resin may be used.
Abstract:
Processes and apparatuses for washing a spent ion exchange bed and for treating biomass-derived pyrolysis oil are provided herein. An exemplary process for washing a spent ion exchange bed employed in purification of biomass-derived pyrolysis oil includes the step of providing a ion-depleted pyrolysis oil stream having an original oxygen content. The ion-depleted pyrolysis oil stream is partially hydrotreated to reduce the oxygen content thereof, thereby producing a partially hydrotreated pyrolysis oil stream having a residual oxygen content that is less than the original oxygen content. At least a portion of the partially hydrotreated pyrolysis oil stream is passed through the spent ion exchange bed. Water is passed through the spent ion exchange bed after passing at least the portion of the partially hydrotreated pyrolysis oil stream therethrough.
Abstract:
A method for inhibiting formation of nitrosamines and an anion exchange resin produced therefrom comprising providing an anion exchange resin with a nitrosating agent and mixing a cation exchange resin with the anion exchange resin to inhibit formation of nitrosamines on the anion exchange resin.
Abstract:
The present invention relates to a process for producing pure water having a total organic carbon content of not more than 200 ppb instantly after start of the operation of a high purity water system, comprising using as an ion exchange resin a specific strongly basic anion exchange resin and passing raw water through the high purity water system at a space velocity of not less than 20. The produced pure water is capable of producing tasteless and odorless pure water instantly after start of the operation of the high purity water system.
Abstract:
Process for removing an alkali metal compound from an acid solution also containing nickel and aluminum compounds, which requires contacting the acid solution first with an ion exchange resin functional to remove the nickel and aluminum compounds from the acid solution; and then contacting the acid solution with an ion exchange resin which is more selective to remove the alkali metal compound from the acid solution.
Abstract:
In the production of lithium-exchange adsorbents, lithium recovery from spent ion-exchange solutions is achieved with advantageous secondary recovery of lithium from zeolite wash liquor and precipitate salts by ion-exchange means.
Abstract:
The invention provides a method for removing metal oxides and colloidal material from high-resistivity water streams at a relatively high removal efficiency. The method includes hydrating a highly ionized dual morphology ion exchange resin in a macroreticular, desiccated morphology to produce a macroreticular, hydrated morphology. A water stream which is brought into contact with the resin is purified. The water stream may, optionally, also be contacted with both a cation exchange resin and an anion exchange resin.The invention additionally provides a method for selecting ion exchange resins which are particularly suited for use in removing metal oxides from a condensate stream. The method serves to narrow the field of candidates for pilot-scale resin testing with industrial water streams.