Abstract:
The present invention provides a WC—Co system (the WC—Co system in the present invention means that it comprises not only hard grains composed mainly of WC and iron group metal powder containing Co, but also at least one kind selected from carbide, nitride, carbonitride and boride of elements in Groups IVa, Va and VIa of the Periodic Table, excluding WC, as hard grains) cemented carbide having high strength and high toughness which is excellent in wear resistance, toughness, chipping resistance and thermal crack resistance. A WC—Co system compact containing an M12C to M3C type double carbide (M represents one or more kinds selected from the group consisting of Ti, Zr, Hf, V, Nb, Ta, Cr, Mo and W, and one or more kinds selected from the group consisting of Fe, Co and Ni) as a main component of the surface layer portion is subjected to a carburization treatment, and then subjected to liquid phase sintering so as to adjust the mean grain size of the surface layer WC depending on a liquid crystal sintering temperature as an indicator.
Abstract:
A powder metallurgy manufactured high speed steel with a high content of nitrogen in the form of a body formed through consolidation of alloyed metal power has the chemical composition in weight-% ; 1-25 C, 1-3.5 N, 0.05-1.7 Mn, 0.05-1.2 Si, 3-6 Cr, 2-5 Mo, 0.05-5W, 6.2-1.7 (V+2 Nb), balance iron and unavoidable impurities in normal amounts, wherein the amount of, on one hand, the carbon equivalent, Ceq, expressed as formula (I), and, on the other hand, the vanadium equivalent, Veq, expressed as Veq=V+2 Nb, are balanced relative to each other such that the amounts of said elements, express in term of said equivalent, will lie within the area A1-B1-C1-D1-A1 in the system of co-ordinates in the figure, in which the Ceq/Veq-co-ordinates of the points A1-D1 are A1: 4.5/17; B1: 5.5/17; C1: 2.5/6.2; D1; 1.5/6.2. The structure of the steel in the hardened and tempered condition, contains 12-40 vol-% of hard matter consisting of particles of MX-type, which are evenly distributed in the matrix of the steel, where M in said hard matter of MX-type essentially consists of vanadium and/or niobium, and X consists of 30-50 weight-% carbon and 50-70 weight-% nitrogen.
Abstract:
A valve seat is provided in which wear resistance can be ensured by optimizing the matrix structure without dispersing of expensive hard particles, and therefore the machinability can be improved and the holding down of cost can be achieved. The valve seat exhibits a metallographic structure consisting of only bainite single phase or only a mixed phase of bainite and martensite, has an area ratio of bainite and martensite in cross section of 100:0 to 50:50, and has a matrix hardness of 250 to 850 Hv.
Abstract:
In the course of the reduction of metal salts powder such as a ternary oxalate of Fe, Co and Ni by heating in a reducing atmosphere, a nitrogen-containing compound gas such as NH3 is introduced into the reaction system atmosphere in order to form a layer of metal nitride on the surface of the powder. The nitride layer protects the resulting alloy powder against air-oxidation and deterioration in the magnetic properties.
Abstract:
An insulating material-coated soft magnetic powder includes: a core particle that includes a base portion containing a soft magnetic material containing Fe as a main component and at least one of Si, Cr, and Al, and that includes an oxide film provided on a surface of the base portion and containing an oxide of at least one of Si, Cr, and Al; and an insulating film that is provided on a surface of the core particle and that contains a ceramic, in which a thickness of the insulating film is 5 nm or more and 300 nm or less, and the oxide contained in the oxide film and the ceramic contained in the insulating film are mutually diffused at an interface between the oxide film and the insulating film.
Abstract:
A core-shell structured alloy powder for additive manufacturing, an additively manufactured precipitation dispersion strengthened alloy component, and a method for additively manufacturing the component are provided. The alloy powder comprises a plurality of particles, where one or more of the plurality of particles comprise an alloy powder core and an oxygen or nitrogen rich shell disposed on at least a portion of the alloy powder core. The alloy powder core comprises an alloy constituent matrix with one or more reactive elements, where the reactive elements are configured to react with oxygen, nitrogen, or both. The alloy constituent matrix comprises stainless steel, an iron based alloy, a nickel based alloy, a nickel-iron based alloy, a cobalt based alloy, a copper based alloy, an aluminum based alloy, a titanium based alloy, or combinations thereof. The alloy constituent matrix comprises reactive elements present in a range from about 0.01 weight percent to 10 weight percent of a total weight of the alloy powder.
Abstract:
The present invention relates to an Sm—Fe—N magnet material including: 7.0-12 at % of Sm; 0.1-1.5 at % of at least one element selected from the group consisting of Hf, Zr, and Sc; 0.1-0.5 at % of Mn; 10-20 at % of N; and 0-35 at % of Co, with the remainder being Fe and unavoidable impurities. The present invention also relates to an Sm—Fe—N bonded magnet including a powder of the Sm—Fe—N magnet material and a binder.
Abstract:
The application discloses a rare-earth permanent magnetic powder, a bonded magnet, and a device using the bonded magnet. The rare-earth permanent magnetic powder comprises 4 to 12 at. % of Nd, 0.1 to 2 at. % of C, 10 to 25 at. % of N and 62.2 to 85.9 at. % of T, wherein T is Fe or FeCo and the main phase of the rare-earth permanent magnetic powder is a hard magnetic phase with a TbCu7 structure. Material volatilization can be avoided effectively during a preparation process of the rare earth permanent magnetic powder, thus improving the wettability with a water-cooling roller during the preparation process and final prepared materials are provided with good magnetic properties.
Abstract:
In an aspect, a negative electrode for a lithium secondary battery and a method of manufacturing the same is provided. The negative electrode for the lithium secondary battery includes a negative active material layer.