Abstract:
Nitrobenzene is continuously produced by nitration of benzene with mixed acid under adiabatic conditions. In this process, the pressure upstream of the nitration reactor is from 14 bar to 40 bar above the pressure in the gas phase of the phase separation apparatus used to separate crude nitrobenzene and waste acid.
Abstract:
A process for preparing trinitrotoluene (TNT) in which toluene is treated with nitric acid having a concentration of about 90% to about 99%, and preferably about 98% to about 99%, by weight at a temperature of less than about 60° C., and preferably less than 30° C., to produce high purity dinitrotoluene. The resulting dinitrotoluene is then treated with nitric acid having a concentration of about 98% to about 99% by weight and trifluoromethane sulfuric acid to produce high purity TNT.
Abstract:
The present invention relates to a process for preparing dinitrotoluene. The process of the invention for preparing dinitrotoluene from mononitrotoluene, which comprises carrying out a mononitrotoluene nitration reaction using a nitrating mixture comprising nitric acid, sulphuric acid and water resulting in a two-phase medium and separating the organic and aqueous phases of said two-phase medium, is characterized in that the mononitrotoluene nitration is carried out using a nitrating mixture comprising at most 10% by weight of water resulting in a two-phase medium, in that the organic and aqueous phases of said two-phase medium are separated, and in that the aqueous phase derived from the separating operation is recycled, at the end of the mononitrotoluene nitration reaction and before the separation of the organic and aqueous phases, such that the weight ratio of the aqueous phase to the organic phase is at least equal to 1.2.
Abstract:
A method for producing nitrobenzene is disclosed which comprises forming a dispersion comprising benzene-containing droplets or particles dispersed in a mixture of concentrated nitric acid and concentrated sulfuric acid, wherein said particles have a mean diameter less than one micron, and subjecting the dispersion to reaction conditions comprising a pressure in the range of about 203 kPa (2 atm) to about 6080 kPa (60 atm) and a temperature in the range of about 20° C. to about 230° C., whereby at least a portion of said benzene is nitrated to form nitrobenzene. A system for carrying out the method is also disclosed.
Abstract:
Dinitrotoluene is produced by nitration of toluene with nitrating acid (mixture of nitric acid and sulfuric acid) in which, in a first stage, the toluene is converted to mononitrotoluene (MNT) and then the mononitrotoluene is converted in a second stage to dinitrotoluene (DNT). Control of the weight ratio of the aqueous to organic phases, dispersion of the organic phase in the aqueous phase and use of less than 2.06 moles of nitric acid per mole of toluene are key features of this process.
Abstract:
The invention relates to a method for producing dinitrotoluene, comprising the steps of a) reacting toluene with nitric acid in the presence of sulphuric acid to give mononitrotoluene, b) separating the reaction product of step a) into a mononitrotoluene-containing organic phase and a sulphuric acid-containing aqueous phase, c) reacting the mononitrotoluene-containing organic phase with nitric acid in the presence of sulphuric acid to give dinitrotoluene, d) separating the reaction product of step c) into a dinitrotoluene-containing organic phase and a sulphuric-acid containing aqueous phase, whereby the reaction product of step a) contains 3.0 to 8 wt % of toluene, in relation to the organic phase, and 0.1 to 1.2 wt. % of nitric acid, in relation to the aqueous phase and the phase separation of step b) is carried out in such a manner that further reaction of toluene with nitric acid is prevented.
Abstract:
A catalyst includes a cyclic imide compound having an N-substituted cyclic imide skeleton represented by following Formula (I): wherein X is an oxygen atom or a hydroxyl group, and having a solubility parameter of less than or equal to 26 [(MPa)1/2] as determined by Fedors method. The catalyst may further comprise a metallic compound. By allowing (A) a compound capable of forming a radical to react with (B) a radical scavenging compound in the presence of the catalyst, an addition or substitution reaction product between the compound (A) and the compound (B) or a derivative thereof can be obtained.
Abstract:
A method for making trinitrotoluene is described, and which includes the steps of providing a source of aqueous nitric acid having a concentration of less than about 95% by weight; mixing a surfactant with the source of aqueous nitric acid so as to dehydrate the aqueous nitric acid to produce a source of nitronium ions; providing a supercritical carbon dioxide environment; providing a source of an organic material to be nitrated to the supercritical carbon dioxide environment; and controllably mixing the source or nitronium ions with the supercritical carbon dioxide environment to nitrate the organic material and produce trinitrotoluene.
Abstract:
A catalyst of the invention includes a cyclic acylurea compound having a cyclic acylurea skeleton represented by following Formula (I): wherein R is a hydrogen atom or a hydroxyl-protecting group; n is 1 or 2; G is a carbon atom or a nitrogen atom, where two Gs are the same or different when n is 2. The catalyst may include the cyclic acylurea compound and a metallic compound in combination. In the presence of the catalyst, (A) a compound capable of forming a radical is allowed to react with (B) a radical scavenging compound and thereby yields an addition or substitution reaction product of the compound (A) and the compound (B) or a derivative thereof. This catalyst can produce an organic compound with a high selectivity in a high yield as a result of, for example, an addition or substitution reaction under mild conditions.
Abstract:
A catalyst includes a cyclic imide compound having an N-substituted cyclic imide skeleton represented by following Formula (I): wherein X is an oxygen atom or a hydroxyl group, and having a solubility parameter of less than or equal to 26 [(MPa)1/2] as determined by Fedors method. The catalyst may further comprise a metallic compound. By allowing (A) a compound capable of forming a radical to react with (B) a radical scavenging compound in the presence of the catalyst, an addition or substitution reaction product between the compound (A) and the compound (B) or a derivative thereof can be obtained.