Abstract:
The present invention relates to a concentrated polymeric composition which comprises: a) vinyl aromatic polymers and/or copolymers in an amount ranging from 10% to 90% by weight, calculated with respect to the overall composition, with respect to the overall composition, b) at least one compound containing epoxy functional groups in an amount ranging from 0.01% to 5% by weight, calculated with respect to the overall composition, with respect to the overall composition, c) at least one infrared absorbing agent, in an amount ranging from 10% to 90% by weight, calculated with respect to the overall composition, with respect to the overall composition.
Abstract:
A particulate polymeric composition capable of being processed to provide expanded articles having a density lower than or equal to 50 g/l and a closed cell content of at least 60% as specified by ASTM D-2856, wherein resulting particulates have a shape factor ranging from 0.6 to 0.99; and wherein the particulate polymeric composition is produced according to a process that prepares expandable granules based on thermoplastic polymers, through a granulation die.
Abstract:
Disclosed herein are surface-modified membranes and other surface-modified substrates exhibiting switchable oleophobicity and oleophilicity in aqueous media. These membranes and substrates may be used for variety of applications, including controllable oil/water separation processes, oil spill cleanup, and oil/water purification. Also provided are the making and processing of such surface-modified membranes and other surface-modified substrates.
Abstract:
A coating formulation intended for expandable particulate styrene polymer and comprising (A) from 10 to 90% by weight of a tristearyl ester whose melting point is in the range from 60 to 65° C., (B) from 10 to 90% by weight of a triglyceride of a hydroxy-C16-C18 oleic acid whose melting point is in the range from 70 to 95° C., and also expandable particulate styrene polymer which has at least one coating composed of said coating-composition formulation.
Abstract:
This invention relates generally to a expanded polystyrene foam having at least one organic compound operably bound to the expanded polystyrene and substantially coating the outer surface of the individual expanded polystyrene beads. Organic compounds hereof may be operably bound to the expanded polystyrene through an electrostatic interaction and may be selected from pesticides, insecticides, termiticides, fungicides, moldicides, bactericides, mildewicides, and combinations thereof.
Abstract:
The present invention provides a foam molded body having excellent heat resistance (low heating dimensional change rate), excellent flame retardancy, and excellent storage stability, composite resin particles for producing the foam molded body, and the like. The present invention relates to composite resin particles comprising a polypropylene-based resin, an ethylene-vinyl acetate copolymer, and a polystyrene-based resin, foam particles of the composite resin particles, and a foam molded body of the foam particles.
Abstract:
A process for the production of a geopolymer composite. The disclosure further relates to a geopolymer composite, and the use of a geopolymer, a geopolymer in combination with an athermanous additive, or the geopolymer composite in expanded vinyl polymer, preferably vinyl aromatic polymer. Furthermore, the disclosure relates to a process for the production of expandable vinyl aromatic polymer granulate, and expandable vinyl aromatic polymer granulate. Finally, the disclosure relates to expanded vinyl foam, preferably vinyl aromatic polymer, and to a masterbatch comprising vinyl polyn and a), b), or c).
Abstract:
A method of manufacturing a flexible intrinsically antimicrobial absorbent porosic composite controlling for an effective pore size using removable pore-forming substances and physically incorporated, non-leaching antimicrobials. A flexible intrinsically antimicrobial absorbent porosic composite controlled for an effective pore size composited physically incorporated, high-surface area, non-leaching antimicrobials, optionally in which the physically incorporated non-leaching antimicrobial exposes nanopillars on its surface to enhance antimicrobial activity. A kit that enhances the effectiveness of the intrinsically antimicrobial absorbent porosic composite by storing the composite within an antimicrobial container.
Abstract:
A process for the production of a geopolymer composite. The disclosure further relates to a geopolymer composite, and the use of a geopolymer, a geopolymer in combination with an athermanous additive, or the geopolymer composite in expanded vinyl polymer, preferably vinyl aromatic polymer. Furthermore, the disclosure relates to a process for the production of expandable vinyl aromatic polymer granulate, and expandable vinyl aromatic polymer granulate. Finally, the disclosure relates to expanded vinyl foam, preferably vinyl aromatic polymer, and to a masterbatch comprising vinyl polymer and a), b), or c).
Abstract:
A method of manufacturing a flexible intrinsically antimicrobial absorbent porosic composite controlling for an effective pore size using removable pore-forming substances and physically incorporated, non-leaching antimicrobials. A flexible intrinsically antimicrobial absorbent porosic composite controlled for an effective pore size composited physically incorporated, high-surface area, non-leaching antimicrobials, optionally in which the physically incorporated non-leaching antimicrobial exposes nanopillars on its surface to enhance antimicrobial activity. A kit that enhances the effectiveness of the intrinsically antimicrobial absorbent porosic composite by storing the composite within an antimicrobial container.