Abstract:
An air compressor comprising: a tank (50), a compression mechanism (30), a motor (5) and a control circuit (7). The control circuit (7) includes a CPU (70) and a storing unit (74) which stores a control program, the compressor operation history and a plurality of operation modes. Each of the operation modes is defined by two setting values: a reference restart pressure value and a motor rotational speed value, at least one of these values being different from among the plurality of modes. The control circuit (7) executes one of the plurality of modes as a target mode in which the control unit controls the motor to restart by comparing the pressure in the tank with the reference restart pressure and rotates the motor at the rotational speed of the target mode. The control circuit changes the target mode from the one of the plurality of modes to another one of the plurality of modes based on the compressor operation history.
Abstract:
A method for controlling a drive unit mechanically connected to a reciprocating linear-motion double-acting pump includes the use of speed-regulating control during the phase in which the piston is moving in just one direction, ascent (109) or descent (102), and the use of torque-regulating control immediately after the reversal (107, 114) of the direction of travel. The method is applicable to a control device and to a drive unit mechanically connected to a reciprocating linear-motion double-acting pump.
Abstract:
The presence or absence of boost pressure is determined from an error between F-P characteristics showing the relationship between the output frequency of an inverter and the power consumption and an actual operating point. When there is boost pressure, an amount of correction of linearized characteristics showing the relationship between quantity and discharge side pressure is automatically calculated based on the error, and the linearized characteristics are corrected. Subsequently, by carrying out a PID control in accordance with a target pressure obtained from post-correction linearized characteristics, the output frequency of an inverter unit is controlled, and an estimated constant end pressure control is carried out. Because of this, a pressure sensor or quantity sensor on a pump intake side is rendered unnecessary, and a simplification and reduction in cost of a feed water pump control device are possible.
Abstract:
A pressure sensor (17) is provided for detecting the discharge pressure of a hydraulic pump (11). An abnormality detection section (23) of a controller (21) detects a dry operation of the hydraulic pump (11) when the discharge pressure detected by the pressure sensor (17) becomes equal to or lower than a judgment reference pressure determined in advance according to the driving rotation speed of the hydraulic pump (11).
Abstract:
A method for controlling a drive unit mechanically connected to a reciprocating linear-motion double-acting pump includes the use of speed-regulating control during the phase in which the piston is moving in just one direction, ascent (109) or descent (102), and the use of torque-regulating control immediately after the reversal (107, 114) of the direction of travel. The method is applicable to a control device and to a drive unit mechanically connected to a reciprocating linear-motion double-acting pump.
Abstract:
A variable capacity hydraulic machine has a rotating group located within a casing and a control housing secured to the casing to extend across and seal an opening in the casing. The control housing accommodates a control circuit and a pair of sensors to sense change in parameters associated with the rotating group. One of the sensors is positioned adjacent the barrel on the rotating group to sense rotational speed and the other senses displacement of the swashplate. The control housing accommodates a control valve and accumulator to supply fluid to the control valve.
Abstract:
A method for managing a pumping device (10) suitable, in use, to supply in a periodic pulsed manner a plurality of given quantities (Q) of a given fluid (M) so as to generate a flow of said given fluid (M) presenting a first given average flow rate (PM1); the supply of each given quantity (Q) being both preceded and followed by respective first pauses (P1) in the supply of the given fluid (M) presenting a first given duration (T1); the method in question comprising at least a phase of stopping the pumping device (10) so as to introduce at least a given second pause during the supply of at least a quantity (Q) of the given fluid (M).
Abstract:
Equipment for controlling blood flow in an extra-corporeal blood circuit, comprising at least a first sensor (11), designed to measure an arterial pressure (Part) upstream of a peristaltic pump (9); at least a second sensor (12), designed to measure an angular velocity (Ω) of the peristaltic pump; a memory (14) designed to store at least one set value (Qset) of the desired blood flow through the access branch, and a calibration function (F) in to at least the variables (v1), related to the angular velocity (Ω) of the pump, (v2), related to the arterial pressure (Part) in the portion of the said access branch upstream of the peristaltic pump, (v3), related to an actual flow of blood (Qactual) through the said access branch; and at least one control unit (13), capable of calculating an actual flow value (Qactual) by applying the function F to the values of angular velocity and arterial pressure (Part, Ω) measured by the sensors; comparing the actual flow (Qactual) with the desired flow (Qset); and varying the angular velocity of the said peristaltic pump if the Qactual−Qset lies outside a predetermined range.
Abstract:
A method for controlling the feed rate of a feed pump, including a drive part having a drive motor and a hydraulic part having an intake opening, a discharge opening and a feed mechanism situated in between, a setpoint feed rate being predefined and the feed pump being triggered based on the setpoint feed rate, the temperature of the fluid and a pressure difference between the intake opening and the discharge opening of the hydraulic part of the feed pump.
Abstract:
A method of controlling a pump and motor system having at least one of a variable displacement pump and a variable displacement motor. The method may comprise providing an engine drivingly coupled to a primary load and a secondary load, the secondary load being driven by the pump and motor system. The method may also comprise sensing a change in engine speed in response to a change in the primary load. The method may further comprise changing the engine speed to compensate for the primary load change. The method may further comprise changing a displacement of the at least one variable displacement pump and the variable displacement motor to maintain a constant secondary load.