Abstract:
A mesh network controller for remote control of devices such as remote firing devices. The controller includes remote firing devices which have a relay capability that allow a controller to communicate with remote firing devices beyond the range of its direct communication. This is accomplished by a signal being relayed from RFDs to RFDs with the signal going in two directions.
Abstract:
For use in a blasting system (10), a visible, throw-away, safety lockout device (30) which operates automatically, to interrupt power to the blasting system (10), upon the occurrence of one or more defined fault conditions.
Abstract:
An explosive system for fracturing an underground geologic formation adjacent to a wellbore can comprise a plurality of explosive units comprising an explosive material contained within the casing, and detonation control modules electrically coupled to the plurality of explosive units and configured to cause a power pulse to be transmitted to at least one detonator of at least one of the plurality of explosive units for detonation of the explosive material. The explosive units are configured to be positioned within a wellbore in spaced apart positions relative to one another along a string with the detonation control modules positioned adjacent to the plurality of explosive units in the wellbore, such that the axial positions of the explosive units relative to the wellbore are at least partially based on geologic properties of the geologic formation adjacent the wellbore.
Abstract:
Detonation control modules and detonation control circuits are provided herein. A trigger input signal can cause a detonation control module to trigger a detonator. A detonation control module can include a timing circuit, a light-producing diode such as a laser diode, an optically triggered diode, and a high-voltage capacitor. The trigger input signal can activate the timing circuit. The timing circuit can control activation of the light-producing diode. Activation of the light-producing diode illuminates and activates the optically triggered diode. The optically triggered diode can be coupled between the high-voltage capacitor and the detonator. Activation of the optically triggered diode causes a power pulse to be released from the high-voltage capacitor that triggers the detonator.
Abstract:
The detonation of one or more explosive charges and propellant charges by a detonator in response to a fire control signal from a command and control system comprised of a command center and instrumentation center with a communications link therebetween. The fire control signal is selectively provided to the detonator from the instrumentation center if plural detonation control switches at the command center are in a fire authorization status, and instruments, and one or more interlocks, if included, are in a ready for firing status. The instrumentation and command centers are desirably mobile, such as being respective vehicles.
Abstract:
An explosives detonator system for detonating an explosive charge with which it is, in use, arranged in a detonating relationship is provided. On acceptance of a detonation initiating signal having a detonation initiating property, the system initiates and thus detonates the explosive charge. The system includes an initiating device which accepts the detonation initiating signal and initiates and thus detonates the explosive charge. The initiating device is initially in a non-detonation initiating condition, in which it is not capable of accepting the detonation initiating signal. The system also includes a switching device that detects a chemical compositional component as a switching property of a switching signal that is transmitted to the detonator system, with the switching device being capable of switching the initiating device, on detection of the chemical compositional component, to a standby condition in which the initiating device accepts the detonation initiating signal when it is transmitted thereto.
Abstract:
An improved control circuit that is structured to energize another device such as a squib. A first portion of the circuit includes a first transistor and is structured to discharge at a first rate a first portion of a charge stored by a capacitor. Another portion of the circuit includes a second transistor and is structured to discharge a second portion of the charge subsequent to the discharge of the first portion of the charge and at a second rate greater than the first rate.
Abstract:
Wireless detonator systems present opportunities for controlled blasting of rock without the encumbrances of physical wired connections at the blast site. Disclosed herein are wireless detonator assemblies, which sense the state of environmental condition(s) of their immediate vicinity, and which are active to receive and/or process a command signal to FIRE only if the environmental condition(s) are deemed suitable or appropriate according to predetermined parameters. Also disclosed are improved methods of blasting involving such wireless detonator assemblies, as well as corresponding wireless electronic primers.
Abstract:
For use in a blasting system (10), a visible, throw-away, safety lockout device (30) which operates automatically, to interrupt power to the blasting system (10), upon the occurrence of one or more defined fault conditions.
Abstract:
Disclosed herein are methods for selective control of groups of wireless initiation devices such as wireless electronic boosters at a blast site. Such methods may be applied to a wide variety of blasting techniques that would benefit from the use of wireless control and initiation of explosive charges at the blast site.