Abstract:
The present invention relates to a method for compensation, for example, for temperature compensation of a fiber optic measurement system designed for determining a mechanical quantity. First and second fiber Bragg gratings have a respective Bragg wavelength, wherein the fiber Bragg gratings are irradiated with primary light. After applying a mechanical quantity to the first and second fiber Bragg gratings, the Bragg wavelengths of the fiber Bragg gratings are changed by the mechanical quantity. Filtering of the first and second secondary light, said first and second secondary light is effected from the primary light and modified by the Bragg wavelength of the fiber Bragg grating depending on the mechanical quantity by use of an optical filter device follows, in such a way that the Bragg wavelength of the first fiber Bragg grating lies in the region of the rising filter gradient of the optical filter device and the Bragg wavelength of the second fiber Bragg grating lies in the region of the falling filter gradient of the optical filter device. After determining the intensities of the filtered first and second secondary light, they are compared, whereupon the mechanical quantity is determined from the intensity comparison.
Abstract:
A dynamic strain sensor includes a strain sensitive transistor and a light emitting diode coupled to the strain sensitive transistor. The dynamic strain sensor can include a piezoelectric layer incorporated into the structure of the strain sensitive transistor. The dynamic strain sensor can sense dynamic strain and can measure and monitor the dynamic strain wirelessly.
Abstract:
Systems and methods for monitoring head-accelerations data for a plurality of athletes. An exemplary system includes a plurality of athlete-mounted sensor units that record acceleration information and wirelessly transmit the recorded acceleration information and information identifying the sensor unit, if the recorded acceleration information exceeds a predefined threshold. A base unit receives the wirelessly transmitted acceleration information and the information identifying the sensor unit and makes the received information available to at least one output device.
Abstract:
A pressure sensor carrier system of fasteners is provided for conveniently and removably attaching a pressure sensor carrier to the top surface of a bed mattress in a manner that minimizes stress concentrations, wrinkles and folds in the carrier. The carrier includes pliable elastic straps at each corner and articulated semi-rigid flaps at each longitudinal side. The tension in the elastic straps and the position of the articulated flaps are independently adjustable to accommodate mattresses of different dimensions.
Abstract:
A pressure sensor is for positioning within a structure. The pressure sensor may include a pressure sensor integrated circuit (IC) having a pressure sensor circuit responsive to bending, and a transceiver circuit coupled to the pressure sensor circuit. The pressure sensor may include a support body having a recess therein coupled to the pressure sensor IC so that the pressure sensor IC bends into the recess when the pressure sensor IC is subjected to external pressure.
Abstract:
A method for measuring power generated by a person during running includes the use of a pair of sensor insoles, each having force sensors. The method utilizes at least one computer device for performing the following: determining a reference distance ratio for the person; receiving force data from the plurality of force sensors; calculating a distance run based on a product of the reference distance ratio and a total number of impulses received in the force data; determining total force, and time elapsed during which the force data is received from the force sensors; and calculating and reporting power.
Abstract:
A load cell includes a flexure element having a Roberval mechanism in which the respective ends of a pair of top and bottom parallel beams including a thin section are integrated in a fixed portion and in a movable portion, and a stopper for preventing an overload disposed between the pair of the top and bottom parallel beams by being fixed to the fixed portion. The front portion of the stopper is disposed in a concave portion for engaging the stopper formed on the inner side surface of the movable portion and extending in the width direction, and the front portion of the stopper of which a width is larger than the movable portion projects outwardly in the width direction of the movable portion.
Abstract:
A device for delivering fluid to a user includes a housing, a drive motor assembly in the housing, a force sensor, and an electronics module. The drive motor assembly regulates delivery of fluid by actuating a piston of a fluid reservoir, and the force sensor generates output levels in response to force imparted thereto during, for example, fluid delivery operations. The electronics module processes the output levels of the force sensor to assess the operating health of the force sensor, to check for occlusions in the fluid delivery path, and to monitor the seating status of the fluid reservoir.
Abstract:
In one aspect, a platform balance includes a frame support, and at least three spaced-apart transducer bodies coupled to the frame support. Each transducer body includes a support having clevis halves. The sensor body includes a generally rigid peripheral member disposed about a spaced-apart central hub joined to each of the clevis halves. At least three flexure components couple the peripheral member to the hub. The flexure components are spaced-apart from each other at generally equal angle intervals about the hub; the sensor body further including a flexure assembly for some flexure components joining the flexure component to at least one of the hub and the peripheral member, the flexure assembly being compliant for forces in a radial direction from the hub to the peripheral member. Each flexure assembly is configured such that forces transferred concentrate strain at a midpoint along the length of each corresponding flexure component.
Abstract:
The present invention includes the following steps: setting the thickness of an interposer to an initial value; determining the axial force of the interposer and the radius of curvature of the warpage caused by the difference in the thermal expansion coefficients of the supporting substrate, the joined layer and the interposer at the set thickness; determining the absolute value of the stress on the chip-connecting surface of the interposer from the stress due to the axial force of the interposer and the stress due to the warpage using the determined axial force and the radius of curvature; determining whether or not the absolute value of the stress is within a tolerance; changing the thickness of the interposer by a predetermined value; and confirming the set thickness as the thickness of the interposer when the determined absolute value of the stress is within the tolerance.