Abstract:
A device, system and method for portable fluorescence detection. The portable device of the present invention features a low power light, in which a wavelength range is defined as at least one wavelength of light. The light source is preferably highly energy efficient, such that a majority of the electrical power which is consumed is then converted into transmitted light. The emitted light from the excited fluorophore is then preferably detected with any low cost and low power photodetector. Although optionally a highly sensitive optical detector may be used, preferably fluorescence is detected with any light sensing device, such as a regular photodiode or a CCD (charge-coupled device) sensor for example.
Abstract:
An optical instrument is provided for simultaneously illuminating two or more spaced-apart reaction regions with an excitation beam generated by a light source. A collimating lens can be disposed along a beam path between the light source and the reaction regions to form bundles of collimated excitation beams, wherein each bundle corresponds to a respective reaction region. Methods of analysis using the optical instrument are also provided.
Abstract:
A method for real-time surface imperfection detection for additive manufacturing and 3-D printing parts is provided. The method includes directing a first light radiation using one or more illumination sources, wherein the first light radiation illuminates a target area of a part being manufactured in a uniform chromatic light such that the target area appears to have a substantially uniform monochromatic color; capturing a current image of a second light radiation that is scattered or reflected by the target area using one or more feedback cameras; and analyzing the current image of the second light radiation using at least one of the one or more feedback camera with a previously acquired image to determine whether a surface imperfection exists or does not exist.
Abstract:
Optical tomography arrangements are disclosed for performing optical tomography on the transparent or translucent contents of individual microplate wells comprising a light emitting array having a plurality of light emitting elements, a sample module, and a light sensing array including a plurality of light sensing elements, wherein the light sensing array is configured to sense light emitted from the light emitting array which has passed through the sample module. The light emitting elements can comprise light emitting diodes (LEDs), organic light emitting diodes (OLEDs), organic light emitting transistors (OLETs), and/or other optoelectronic devices. The light sensing array can comprise organic light sensing devices, photodiodes, phototransistors, CMOS photodetectors, or charge-coupled devices (CCDs). The light emitting array can be flat or curved, and the light sensing array can be flat or curved. The collection of measurement values can be overspecified, and a generalized inverse operation can provide solutions rendering computational tomography data.
Abstract:
An apparatus and method are provided for differentiating multiple detectable signals by excitation wavelength. The apparatus can include a light source that can emit respective excitation light wavelengths or wavelength ranges towards a sample in a sample retaining region, for example, in a well. The sample can contain two or more detectable markers, for example, fluorescent dyes, each of which can be capable of generating increased detectable emissions when excited in the presence of a target component. The detectable markers can have excitation wavelength ranges and/or emission wavelength ranges that overlap with the ranges of the other detectable markers. A detector can be arranged for detecting an emission wavelength or wavelength range emitted from a first marker within the overlapping wavelength range of at least one of the other markers.
Abstract:
Chlorophyll fluorescence may be studied in response to a variety of environmental cues or conditions by growing phototrophic organisms under actinic illumination. Such illumination may be punctuated or disrupted to gain information about the photosynthetic properties or performance of the phototrophic organism. Instruments or devices for carrying out the method are also described.
Abstract:
Cell culturing and tracking systems using an array of organic light emitting diodes (OLEDs) to illuminate cells and/or other particles in a cell chamber are described. Compared to conventional light sources, the OLED array consumes very little energy and emits a small amount of waste heat, so it may be disposed near or on the cell chamber. For instance, it can be printed on one side of the cell chamber itself. In addition, the OLED array may be patterned into pixels or sub-pixels (individual OLEDs), each of which is as small as or smaller than an individual cell or particle. Because the pixels are so small, OLED illumination can be used to acquire images with a spatial resolution equal to or better than the cell or particle cell. As a result, the OLED array can be used to track, monitor, identify, and manipulate individual cells within the cell culture.
Abstract:
An instrument is provided that can monitor nucleic acid sequence amplification reactions, for example, PCR amplification of DNA and DNA fragments. The instrument includes a multi-notch filter disposed along one or both of an excitation beam path and an emission beam path. Methods are also provided for monitoring nucleic acid sequence amplifications using an instrument that includes a multi-notch filter disposed along a beam path.
Abstract:
A senor uses a transduction mechanism of attenuating electroluminescence. Luminescence from a light emitting diode is attenuated as a consequence of direct interaction of an analyte and a electroluminescent material, An electroluminescent diode sensor (EDS) is fabricated in a way that allows the electroluminescent material in the diode to be exposed to gaseous, liquid or solid sample(s) which may affect the luminescence intensity of the diode.
Abstract:
An optical instrument is provided for simultaneously illuminating two or more spaced-apart reaction regions with excitation beams generated by a light source. The light source can include an area light array of light emitting diodes, one or more solid state lasers, one or more micro-wire lasers, or a combination thereof. According to various embodiments, a Fresnel lens can be disposed along a beam bath between the light source and the reaction regions. Methods of analysis using the optical instrument are also provided.