Abstract:
A part scanning and part calibration method for the inspection of printed circuit boards and integrated circuits includes a camera and two rotating mirrors to scan an image of a pattern mask retical upon which a precise pattern has been deposited. Small parts are placed upon the retical to be inspected. The third overhead mirror is provided to view the part under inspection from another perspective. The scene of the part is triangulated and the dimensions of the system can thus be calibrated. A precise retical mask is provided with dot patterns which provide an additional set of information needed for calibration. By scanning more than one dot pattern the missing state values can be resolved using an iterative trigonomic solution.
Abstract:
Inspection of completed cigarettes is accomplished by the cigarettes traveling on a rolling drum past a single stationary rolling block with preferably two cameras connected to a vision system. The first camera views the cigarette before the rolling block, the cigarette is then rolled approximately 180.degree. and then the second camera views the previously hidden portion of the cigarette. Cigarettes are accepted or rejected based on a comparison of the viewed cigarettes to a predetermined set of characteristics.
Abstract:
A method for measuring internal defects of a specimen, comprising the steps of allowing a finely focused laser beam to be incident into a specimen from its surface and observing the scattered light of the said laser beam from inside the said specimen from the surface of the specimen and in a different direction to the optical axis of incidence of the laser beam.
Abstract:
A process and device for detecting and evaluating surface cracks in workpieces wherein a picture is produced of the surface of the workpiece by means of a video camera and said picture is digitized and is processed by means of a computer to produce a binary picture of any cracks present and a sorting report is triggered when a preselected threshold level is exceeded. In order to obtain a sorting signal that is independent of the absolute brightness of the original picture a blurred background picture is derived from the original picture levels that have been converted to digitized grey shade levels and subtracted from the original picture, the difference picture formed in this way giving the crack representation. A dynamic threshold level for the sorting signal is determined by comparing the grey shade distribution of the original or the difference picture with at least one previously evaluated or difference picture and a binary picture is produced from the original or the difference picture and the grey shade threshold, and picture elements with their gray shades exceeding the set threshold are indicated as defects. The surface of the workpiece may be pre-treated by the magnetic powder or dye penetration process and/or contrast intensifying means.
Abstract:
Apparatus is disclosed for detecting irregularities or flaws in seams such as the seams of cans. The apparatus includes means for irradiating the surface of the seam to produce reflected radiation signals, a plurality of radiation sensors, each having a selected field of view of the surface, and each producing sensor output signals dependent on reflected radiation signals received within such field of view. A signal processing means receives sensor output signals for a succession of fields of view along the longitudinal length of the seam and derives therefrom signal data representing a dimensional feature of the seam. Signl comparison means compares such derived data with signal data representing an acceptable dimensional limit and produces a rejection signal in the event that the dimensional feature does not fall within the limit. Means for classifying the nature of an irregularity is also disclosed, as is transport means for the movement of seams though the field of view of the sensors.
Abstract:
The invention has for its purpose to provide a method and an apparatus for inspecting the bent edge of a disc-shaped object, e.g. the annular edge of a metal lid bounding a gutter for sealing compound. In order to realize such an inspection with great reliability according to the invention the resolution is made as great as possible by means of the following steps:(1) directing a light beam onto the edge zone of the object under an angle of incidents, such that the bent edge gives a shadow in said edge zone;(2) previously determining the shape of the reflection picture also determined by said shadow of said illuminated edge zone in case of an object satisfying a predetermined standard;(3) determining the reflection picture of the edge zone of an object to be inspected; and(4) comparing the results of steps (3) and (4) and generating a rejection signal in case of a detected deviation lying outside a previously chosen tolerance range.
Abstract:
A defect-recognition processing apparatus converts into a defect image pattern, via a television camera, crystal defects present on the surface of an object under inspection, to process an image signal, by means of an image processing device, which corresponds to the defect image pattern, to measure rectangular images in terms of their length and their ratio between L.sub.Y and L.sub.X (L.sub.Y : a length in a longitudinal direction and L.sub.X : a length in the lateral direction of the wafer) and to detect defects developed on the surface of the aforementioned object.
Abstract:
A tachometer (32) monitors the speed of a continuously moving web or article (12). A lens (20) focuses an image of a portion of the web in an examination region (14) on image section (22) of a CCD array. As the web moves, the image moves correspondingly along the image section. A synchronizing circuit (C) adjusts the frequency of the tachometer output signal and uses it in lieu of a fixed frequency oscillator as the master clocking or timing basis for generating clocking pulses for the CCD array. More specifically, the synchronizing circuit generates four phase clocking pulses (.phi.1A-.phi.4A) which shifts lines of CCD data along the image section at the same speed that the image is moving along the CCD section. In this manner, the pixel values integrate light from the same area of the imaged web at each shifted position along the image section. Each line of data from the image section may be shifted at the same rate through an optically light-insensitive storage section (24) and read out serially by shift registers (26) to form a video signal. A quality control analysis circuit (D) monitors the video signal for selected characteristics of the imaged web. Preferably, a record is maintained of the location of flaws and defects noted by the quality analysis circuit.
Abstract:
A semiconductor device inspection system capable of objectively accomplishing visual image inspection of a semiconductor device and minimizing error in the inspection, to thereby effectively carry out the inspection with high accuracy and at high speed. The system includes a low magnification image pickup mechanism which consists of a plurality of low magnification image pickup units each carrying out low magnification image pickup of a semiconductor device to generate an image signal. The system also includes a signal processing system for processing the image signal to judge the correctness of the semiconductor device. In the image pickup units, their light receptors are each arranged in parallel to an inspected surface of the semiconductor device and their central axes intersect together on the inspected surface. The system may also include a high magnification image pickup unit consisting of a high magnification image pickup mechanism and a light-permeable element retractably positioned between the unit and a semiconductor device to be inspected.
Abstract:
A flaw detector, for detecting a flaw in a sheet, picks up, by means of a plurality of linear array cameras, the light of rays transmitted through a sheet. The video signals from the linear array cameras, which are appropriately processed, are used for checking whether a flaw is present or not. A sensitivity-difference correcting section corrects sensitivity differences amoung the cameras and among photosensitive elements of each camera, which sensitivity differences are contained in the video signal. Automatic gain control sections, for transparent and opaque flaws, respectively, control the sensitivities of the video signals. These signals are differentiated, and then compared with a predetermined slicing level, thereby to check whether transparent and opaque flaws are present or not.