Abstract:
Disclosed herein are variations of megavoltage (MV) detectors that may be used for acquiring high resolution dynamic images and dose measurements in patients. One variation of a MV detector comprises a scintillating optical fiber plate, a photodiode array configured to receive light data from the optical fibers, and readout electronics. In some variations, the scintillating optical fiber plate comprises one or more fibers that are focused to the radiation source. The diameters of the fibers may be smaller than the pixels of the photodiode array. In some variations, the fiber diameter is on the order of about 2 to about 100 times smaller than the width of a photodiode array pixel, e.g., about 20 times smaller. Also disclosed herein are methods of manufacturing a focused scintillating fiber optic plate.
Abstract:
A wave guide face plate for transmitting an image formed in a scintillating material included as part of a transmitting medium is disclosed. The transmitting medium includes a random distribution of different refractive index regions in two orthogonal dimensions, and an essentially consistent refractive index in a third orthogonal dimension. The third orthogonal direction is aligned with a transmission axis of the wave transmitter extending from an input location to a wave detector location. The transmission efficiency of the wave guide faceplate is improved in situations where the entry angle of the input radiation is different from the axis of the wave transmitter as compared to conventional faceplates.
Abstract:
Disclosed herein are variations of megavoltage (MV) detectors that may be used for acquiring high resolution dynamic images and dose measurements in patients. One variation of a MV detector comprises a scintillating optical fiber plate, a photodiode array configured to receive light data from the optical fibers, and readout electronics. In some variations, the scintillating optical fiber plate comprises one or more fibers that are focused to the radiation source. The diameters of the fibers may be smaller than the pixels of the photodiode array. In some variations, the fiber diameter is on the order of about 2 to about 100 times smaller than the width of a photodiode array pixel, e.g., about 20 times smaller. Also disclosed herein are methods of manufacturing a focused scintillating fiber optic plate.
Abstract:
A method is for the production of a scintillator fiber. In an embodiment, the method includes provisioning a suspension of a binder dissolved in a solvent and a scintillator material; and pressing the suspension into a precipitation bath in which the binder is insoluble.
Abstract:
A radiation-detecting device including at least two radiation detectors distributed in series along a support cable, each detector including an optically stimulated luminescence detection element which is optically coupled to at least one optical fiber, each optically stimulated luminescence detection element being held opposite a first end of the optical fiber by a mechanical part fixed to the support cable, the mechanical part being held in a flexible cable by a holding mechanism, second ends of each optical fiber leading to the same first end of the flexible cable.
Abstract:
A scintillator for imaging using X-rays or gamma rays or charged particles, includes a network of glass capillaries with an inner diameter no greater than 500 micrometers. The capillaries are filled with a polymer material made up of at least: (i) a monomer selected from the group including vinyltoluene, styrene and vinylxylene and the isomers thereof, (ii) a cross-linking agent made up of a dimethacrylate having a central chain which includes 1 to 12 carbon atoms, and (iii) lead dimethacrylate. The cross-linking agent is provided to make up 17 wt % to 60 wt % of the mixture thereof with the monomer, and the lead dimethacrylate makes up at least 5 wt %. The cross-linking agent is provided in a ratio of 1.75 to 2.25 times the weight content of the lead dimethacrylate.
Abstract:
Described is a scintillator screen including a plurality of filaments. Each of the plurality of filaments includes scintillating particles dispersed within a thermoplastic polymer. The thermoplastic polymer includes an elastic additive. The scintillating particles are from about 10 volume percent to about 60 volume percent of each of the plurality of filaments. Each of the plurality of filaments has a refractive index of greater than or equal to 1.5. The plurality of filaments are substantially parallel to each other and are at a volume packing of from about 60 percent to about 90 percent.
Abstract:
A system and method for measuring a dose of ionizing radiation received by a pre-determined part of the body during radiotherapy or interventional procedures. The system comprises: a) a light guide, which under the influence of ionizing radiation undergoes measurable and quantifiable physical changes; b) a detector system which allows the recording and quantification of the signal emitted by the light guide; and c) a control unit which is adapted for calculating a dose of ionizing radiation previously or simultaneously received by the light guide on basis of said response signal. The light guide is coated over at least part of its length with a coating comprising a first component acting as a place dependent spectral filter and a second component including at least one luminescent material, dispersed in a transparent matrix. When exposed to radiation, the luminescent component will emit light with a spectrum depending on the chosen material.
Abstract:
Provided are a radiation detector and a radiographic apparatus including the same. The radiation detector may have high quantum efficiency due to use of a plurality of nano-waveguides that extend from an incident end thereof to an exit end thereof and are configured to generate scintillation as radiation rays penetrate therethrough or a photoconductor.
Abstract:
The present invention provides a radiation image detecting device which suppresses occurrence of image irregularities and reduction of sharpness by joining a planar light-receiving device and a scintillator panel so that the distance between the planar light-receiving device and the scintillator panel via an adhesive layer is uniform in plane. The present invention also provides a process for producing the radiation image detecting device. The radiation image detecting device includes, in order, a scintillator panel including a support and a scintillator layer on the support, the scintillator layer having a film-thickness distribution; an adhesive layer; and a planar light-receiving device. In the radiation image detecting device, at least one of the support and the planar light-receiving device bends, so that the scintillator panel and the planar light-receiving device are arranged in plane via the adhesive layer at uniform distance.