Abstract:
A relatively high-speed, high-efficiency CMOS two branch driver core that may operate under relatively low supply voltage may include thin oxide CMOS transistors configured to generate rail-to-rail output swings larger than twice a supply voltage and without exceeding safe operating area limits. Each of the two branches may include two stacked CMOS inverter pairs configured to drive a respective load capacitance coupled between respective CMOS inverter outputs, in phase opposition to the other branch. A pre-driver circuit input with a differential modulating signal may output two synchronous differential voltage drive signals of a swing of half of the supply voltage and DC-shifted by half of the supply voltage with respect to each other and that may be applied to the respective CMOS inverter inputs of the two branches.
Abstract:
EOP-based photonic devices employing coplanar electrodes and in-plane poled chromophores and methods of their manufacture. In an individual EOP-based photonic device, enhanced performance is achieved through in-plane poled chromophores having opposing polarities, enabling, for example, a push-pull optical modulator with reduced operational voltage and switching power relative to a conventional MZ modulator. For a plurality of EOP-based photonic devices, enhanced manufacturability is achieved through a sacrificial interconnect enabling concurrent in-plane poling of many EOP regions disposed on a substrate.
Abstract:
An electrical waveguide transmission device accepts a differential electrical input signal (e.g., S+ and S−) propagating along two separate signal conductors with grounded electrical return paths, and outputs the differential input signal to a series push-pull traveling wave electrode Mach-Zehnder optical modulator over a pair of output conductors that act as a return path for each other and provide a desired characteristic impedance matching that of the Mach-Zehnder optical modulator.
Abstract:
There is provided a waveguide type optical device whose parasitic capacitance is reduced to allow an increase in signal transmission speed. Bottom electrode 41 is formed on substrate 2, bottom cladding 51 is formed on bottom electrode 41, and bottom core 62 is formed on bottom cladding 51. Top core 61 is formed on bottom core 62, top cladding 53 is formed on top core 61, and top electrode 42 is formed on top cladding 53. Two sides of top core 61 and bottom core 62 are covered with side cladding layer 52. Vertically overlapping portions of top electrode 42 and bottom electrode 41 are located almost at a same place as a region for a core layer composed of top core 61 and bottom core 62. The width of one from among top core 61 and bottom core 62 is satisfying a single mode condition, and the width of the other is almost equal to or more than the width of a field distribution.
Abstract:
The method and system are disclosed for automatic feedback control of integrated optical quadrature modulator for generation of optical quaternary phase-shift-keyed signal in coherent optical communications. The method comprises the steps of detecting at least a part of an output optical signal from the QPSK modulator, extracting of a particular portion of the output signal in frequency domain, and processing the signal in frequency domain to optimize the transmission of an optical link. The system and method of optical communications in fiber or free space are disclosed that implement the quadrature data modulator with automatic feedback control.
Abstract:
An apparatus includes an optical splitter, an optical intensity combiner, first and second Mach-Zehnder interferometers, and first and second drive electrodes. The first Mach-Zehnder interferometer connects a first optical output of the optical intensity splitter to a first optical input of the optical intensity combiner. The second Mach-Zehnder interferometer connects a second optical output of the optical intensity splitter to a second optical input of the optical intensity combiner. The first drive electrode is located between and connected to a pair of semiconductor junctions along first internal optical arms of the Mach-Zehnder interferometers. The second drive electrode is located between and connected to a pair of semiconductor junctions along second internal optical arms of the Mach-Zehnder interferometers.
Abstract:
An optical modulator comprises a Z-cut lithium niobate substrate (21) on which is formed a Mach-Zehnder interferometer having two generally parallel waveguides (23, 25) lying beneath a buffer layer of dielectric material (27). First and second ground electrodes (29, 33) and a hot electrode (31) are disposed on the buffer layer (27), the first and second ground electrodes (29, 33) being spaced either side of the hot electrode (31), the hot electrode (31) and the first ground electrode (29) being proximate to at least apart of the respective waveguides (25, 23). The electrode structure is unsymmetrical in that (a) the hot electrode and the first ground electrode each have a width substantially less than that of the second ground electrode and or (b) the spacing between the first ground and hot electrodes is different from the spacing between the second ground and hot electrodes. whereby a range of chirp values can be obtained. When the spacing (G1) between the first ground and hot electrodes (29, 31) is smaller than the spacing (G2) between the second ground and hot electrodes (33, 31), and preferably the hot and first ground electrodes have a width not exceeding 15 μm, the modulator is capable of operation at frequencies above 10 GHz, possibly up to around 40 GHz.
Abstract:
A process for forming an ohmic contact on the back surface of a semiconductor body includes depositing a donor layer on the back surface of the semiconductor body followed by a sintering step to form a shallow intermetallic region capable of forming a low resistance contact with a contact metal.
Abstract:
A Mach-Zehnder interferometer modulator for modulating a beam of laser light includes a pair of separate waveguides through which the laser light is passed after splitting in a splitting zone and after which the light is recombined in a merge zone. The waveguides are formed in a semiconductor material with one of the electrodes of each pair being formed in a doped layer while the other electrode, the top electrode, is a surface metalisation. The doped layer is trenched so that adjacent electrodes in the doped layer are electrically isolated from one another so that one of the electrodes in the doped layer can be connected with a different electrical polarity to the other electrode in the doped layer thereby permitting the connection of the pairs of electrodes in parallel anti-phase mode.
Abstract:
An optical modulator comprises a Z-cut lithium niobate substrate (21) on which is formed a Mach-Zehnder interferometer having two generally parallel waveguides (23, 25) lying beneath a buffer layer of dielectric material (27). First and second ground electrodes (29, 33) and a hot electrode (31) are disposed on the buffer layer (27), the first and second ground electrodes (29, 33) being spaced either side of the hot electrode (31), the hot electrode (31) and the first ground electrode (29) being proximate to at least apart of the respective waveguides (25, 23). The electrode structure is unsymmetrical in that (a) the hot electrode and the first ground electrode each have a width substantially less than that of the second ground electrode and or (b) the spacing between the first ground and hot electrodes is different from the spacing between the second ground and hot electrodes. whereby a range of chirp values can be obtained. When the spacing (G1) between the first ground and hot electrodes (29, 31) is smaller than the spacing (G2) between the second ground and hot electrodes (33, 31), and preferably the hot and first ground electrodes have a width not exceeding 15 μm, the modulator is capable of operation at frequencies above 10 GHz, possibly up to around 40 GHz.