Abstract:
A liquid crystal display device of the present invention is arranged such that a retardation of a liquid crystal layer which obtained while no voltage is applied falls within ±(a value which is one-tenth of a main wavelength) of a value obtained by adding natural number times the main wavelength to a total retardation of at least one optical compensation film. This allows suppression of a transmittance during no voltage application.
Abstract:
A slit-shaped repair hole (27S) for repairing a short circuit defect of adjacent pixel electrodes (27) is provided straddling a storage capacitance wiring line (22CsL) at at least one intersection of the edges of the plurality of the pixel electrodes (27) and the storage capacitance wiring line (22CsL).
Abstract:
A method of manufacturing a liquid crystal panel in which the bright point defect is effectively corrected is provided. The method of manufacturing a liquid crystal panel 11 including a pair of substrates 40 and 30, and a liquid crystal layer 50 provided between the pair of the substrates 40 and 30 includes detecting a bright point defect in the liquid crystal panel 11; forming a first light blocking portion BL1 in one of the substrates 40 and 30 and in a part of an area that surrounds the bright point defect with a plan view; forming a recess in a portion of one of the substrates 40, 30 that overlaps the bright point defect and on a surface of the one of the substrates 40 and 30 that is opposite from a surface facing the liquid crystal layer; and forming a second light blocking portion BL2 in the recess.
Abstract:
A liquid crystal display device includes a liquid crystal panel and a lighting device. The liquid crystal panel has a liquid crystal layer provided between a pair of glass substrates. The lighting device supplies illumination light to the liquid crystal panel. At least one of the glass substrates has a photonic crystal formed in a position so that it stops light from reaching a luminance point defect occurrence portion in the liquid crystal layer that is a cause of a luminance point defect. The photonic crystal absorbs light having a color displayable in the luminance point defect occurrence portion.
Abstract:
The present invention provides a method and system for repairing flat panel display, which repairing hot pixels of the flat panel display by femtosecond laser. The flat panel display comprises a LCD module and a color filter disposed on the top of the LCD module, wherein the surface of the color filter corresponding to the LCD module further has a color photoresist layer. The femtosecond laser is projected onto the color photoresist layer corresponding to the hot pixels such that a phenomenon of nonlinear multiple photons absorption can be occurred to change property of the color photoresist layer so as to transform the hot pixels into dead pixels.
Abstract:
A liquid crystal display uses a pixel division method by which the size of a defect can be reduced much more than conventionally possible, and a defect correcting method for the liquid crystal display. The liquid crystal display is provided with an active matrix array substrate including a plurality of gate lines and a plurality of source lines arranged on a transparent substrate so as to intersect with each other, and a plurality of pixel electrodes arranged in a matrix, each pixel electrode including an assembly of a plurality of sub-pixel electrodes, separate TFTs respectively connected to the sub-pixel electrodes in the vicinity of an intersection portion of the gate line and the source line, the TFTs being driven by the common gate line and the common source line, and at least one opening portion being formed in a lower-layer side line placed in a lower layer at the intersection portion.
Abstract:
A display panel is described that includes a picture element controllable by an active matrix drive comprising at least one structural element (a), wherein the at least one structural element (a) comprises a plurality of sub-units (b1, b2, b3) whose electrical connectivity (c1, c2, c3) is alterable for repairing of an electrical malformation related to the structural element (a).
Abstract:
The present invention provides a liquid crystal display (“LCD”), a method of manufacturing the same, and a method of repairing the same capable of obtaining a wide viewing angle and improving a success ratio of repair. The LCD includes a gate line, a first data line intersecting the gate line, a thin film transistor (“TFT”) connected with the gate line and the first data line, a pixel electrode connected with the TFT, a first conductive pattern partially overlapping with a first end of the pixel electrode, a second conductive pattern partially overlapping with a second end of the pixel electrode, and a storage capacitor, wherein at least one of the first conductive pattern and the second conductive pattern partially overlaps with the first data line adjacent to the first end of the pixel electrode and a second data line adjacent to the second end of the pixel electrode, respectively.
Abstract:
The pixel structure and the repairing method of the TFT array substrate are provided. The pixel has a semiconductor electrode which is partially overlapped with a floating metal located in the first conductive layer. Both the data line and the drain electrode have protruded regions partially overlapped with the semiconductor electrode and the floating metal. Once the pixel is found to be a white defect, a laser beam is used to irradiate the protruded region of the data line to electrically connect the data line and the floating metal and so as to form a diode structure having the rectified effect. Consequently, after the laser repair, the pixel defect will display as the non-flicked white point and black point in the white-picture inspection and the black-picture inspection respectively.
Abstract:
A liquid crystal display uses a pixel division method by which the size of a defect can be reduced much more than conventionally possible, and a defect correcting method for the liquid crystal display. The liquid crystal display is provided with an active matrix array substrate including a plurality of gate lines and a plurality of source lines arranged on a transparent substrate so as to intersect with each other, and a plurality of pixel electrodes arranged in a matrix, each pixel electrode including an assembly of a plurality of sub-pixel electrodes, separate TFTs respectively connected to the sub-pixel electrodes in the vicinity of an intersection portion of the gate line and the source line, the TFTs being driven by the common gate line and the common source line, and at least one opening portion being formed in a lower-layer side line placed in a lower layer at the intersection portion.