Abstract:
A robot cleaner and a method of performing a human care using the same. Specifically, the robot cleaner can include a main body with a cleaning module, a driving unit to move the main body, one or more cameras to generate image information on a management object, a communication unit to communicate with an external communication device and transmit the image information to the external communication device, and a control unit to recognize the management object and control the robot cleaner such that the management object is included in the image information while following a position change of the management object.
Abstract:
A self operable wheelchair includes a chair body having several wheels for moving about; a power module coupled electrically to one wheel of the chair body for supplying power; a processing module coupled electrically to the power module for processing one route data and converting into a control signal transmitted to the power module for controlling activation of the chair body; a memory module for storing and transmitting the route data to the processing module; a detection module capable of detecting the route data of the chair body and transmitting the route data via the processing module to store within the memory module; and an operation module for transmitting an operation signal to the processing module, which, in turn, activates the chair body based on the operation signal.
Abstract:
An autonomous mobile body includes a laser range sensor and an electronic control device. The electronic control device includes a storage unit that stores a size D2 of the autonomous mobile body, a width identification unit that identifies a spatial size D1 in a width direction of a passage which is a region where the autonomous mobile body can move, a calculation unit that calculates a size D8 of an interfering obstacle in a direction which is substantially perpendicular to a moving target direction on a road surface based on obstacle information, an action selection unit that selects a stopping action or a retreat action based on the spatial size D1, the size D2 of the autonomous mobile body, and the size D8 of the interfering obstacle, and a mobile control unit that controls the autonomous mobile body to stop when the stopping action is selected and control the autonomous mobile body to retreat when the retreat action is selected.
Abstract:
A method of operating a mobile robot to traverse a threshold includes detecting a threshold proximate the robot. The robot includes a holonomic drive system having first, second, and third drive elements configured to maneuver the robot omni-directionally. The method further includes moving the first drive element onto the threshold from a first side and moving the second drive element onto the threshold to place both the first and second drive elements on the threshold. The method includes moving the first drive element off a second side of the threshold, opposite to the first side of the threshold, and moving the third drive element onto the threshold, placing both the second and third drive elements on the threshold. The method includes moving both the second and third drive elements off the second side of the threshold.
Abstract:
A mobile robot that includes a drive system, a controller in communication with the drive system, and a volumetric point cloud imaging device supported above the drive system at a height of greater than about one feet above the ground and directed to be capable of obtaining a point cloud from a volume of space that includes a floor plane in a direction of movement of the mobile robot. The controller receives point cloud signals from the imaging device and issues drive commands to the drive system based at least in part on the received point cloud signals.
Abstract:
An autonomous moving device includes a travel unit with a wheel driven by a motor and an upper body including an environment-recognition sensor that detects an obstacle in a traveling direction. The upper body includes means that recognize device and obstacle positions, means that evaluates avoidance capability, and means that obtains priority of collision avoidance of an estimated passage area of the obstacle. The upper body further includes a control unit that moves the travel unit to an area where an estimated passage area of an obstacle whose priority of collision avoidance is high that does not overlap an area where the travel unit is located and which is an area where collision can be avoided even if an area where an estimated passage area of an obstacle whose priority of collision avoidance is low overlaps the area where the travel unit is located.
Abstract:
The present invention discloses methods, systems and devices for synchronized navigation of an environment by a plurality of mobile agents wherein aspects of the navigation of one or more of the agents are used to moderate aspects of the navigation of one or more other agents. In one embodiment, two mobile agents—a baby stroller and a caregiver—are configured in a manner that facilitates tandem navigation of the environment by the mobile agents. In yet another embodiment, a wheelchair designed to transport a disabled person navigates in tandem with a guide such as a human guide, a guide dog or any other suitable agent. Other embodiments including an entertainment application in which a mobile agent follows or leads another are also disclosed.
Abstract:
A movable part which combines with a stationary part to form a bed includes: a contact sensor (50); wheels (44) rotatable in all directions; a body drive unit (31) which drives the wheels (44); an avoidance instruction unit (51) which generates an avoidance instruction according to a result of detection by a contact sensor (50); a rotation center setting unit (52) which sets a rotation center Q2 for the avoidance instruction; an avoidance instruction translation unit (54) which translates the avoidance instruction and the rotation center Q2 into a move instruction; and a position detection unit (34) which detects a positional relationship to a docking area (20), and the rotation center setting unit (52) sets the rotation center according to the positional relationship detected by the position detection unit (34).
Abstract:
A method of navigating a mobile robotic device may include receiving, by a mobile robotic device, a wireless transmission from a transponder associated with an object, where the object is within a range of the mobile robotic device and in response to receiving the notification, altering a navigation course by the mobile robotic device to allow the object to pass the mobile robotic device. The mobile robotic device may be preprogrammed with at least a portion of the navigation course. The method may include resuming the navigation course by the mobile robotic device.
Abstract:
A robotic system that includes a mobile robot and a remote input device. The input device may be a joystick that is used to move a camera and a mobile platform of the robot. The system may operate in a mode where the mobile platform moves in a camera reference coordinate system. The camera reference coordinate system is fixed to a viewing image provided by the camera so that movement of the robot corresponds to a direction viewed on a screen. This prevents disorientation during movement of the robot if the camera is panned across a viewing area.