Abstract:
A laser diode includes a substrate having a lattice constant of GaAs or between GaAs and GaP, a first cladding layer of AlGaInP formed on the substrate, an active layer of GaInAsP formed on the first cladding layer, an etching stopper layer of GaInP formed on the active layer, a pair of current-blocking regions of AlGaInP formed on the etching stopper layer so as to define a strip region therebetween, an optical waveguide layer of AlGaInP formed on the pair of current-blocking regions so as to cover the etching stopper layer in the stripe region, and a second cladding layer of AlGaInP formed on the optical waveguide layer, wherein the current-blocking regions having an Al content substantially identical with an Al content of the second cladding layer.
Abstract:
The invention relates to a broad-band light emitting diode having an active layer composed of a plurality of light emission regions of differing materials for emitting light at a plurality of wavelengths, wherein each of the emission regions of the active layer is electrically controlled by a separate electrode for providing a broad-band emission or optical gain with a multi-point control of its spectral profile.
Abstract:
In connection with an optical-electronic semiconductor device, improved photoluminescent output is provided at wavelengths approaching and beyond 1.3 μm. According to one aspect, a multiple quantum well strain compensated structure is formed using a GaInNAs-based quantum well laser diode with GaNAs-based barrier layers. By growing tensile-strained GaNAs barrier layers, a larger active region with multiple quantum wells can be formed increasing the optical gain of the device. In example implementations, both edge emitting laser devices and vertical cavity surface emitting laser (VCSEL) devices can be grown with at least several quantum wells, for example, nine quantum wells, and with room temperature emission approaching and beyond 1.3 μm.
Abstract:
Ga(In)N-based laser structures and related methods of fabrication are proposed where Ga(In)N-based semiconductor laser structures are formed on AlN or GaN substrates in a manner that addresses the need to avoid undue tensile strain in the semiconductor structure. In accordance with one embodiment of the present invention, a Ga(In)N-based semiconductor laser is provided on an AlN or GaN substrate provided with an AlGaN lattice adjustment layer where the substrate, the lattice adjustment layer, the lower cladding region, the active waveguiding region, the upper cladding region, and the N and P type contact regions of the laser form a compositional continuum in the semiconductor laser. Additional embodiments are disclosed and claimed.
Abstract:
A surface emitting semiconductor laser device which can be manufactured easily and inexpensively and in which the direction of polarization of a laser beam can be controlled into a fixed direction. An oxidizing treatment is applied to a current confinement layer to form a current passage region in a rectangular shape having an in-plane anisotropy. In addition, a pair of trenches with their side surfaces, on the side of a beam outgoing aperture, set to be parallel to either of the diagonal direction of the current passage region is provided at opposite positions with the beam outgoing aperture as a center therebetween. The direction of polarization of the laser beam made to go out through the beam outgoing aperture is specified into only one direction, whereby the direction of polarization can be accurately controlled to a fixed direction. Besides, where the trench or trenches are filled with a metallic material or insulating material which is absorptive with respect to the laser beam, the polarization ratio of the laser beam is further enhanced.
Abstract:
In this semiconductor laser device, a semiconductor laser element is so fixed to a base that a distance between a convex side of a warp thereof and the base varies with the warp of the semiconductor laser element at least along a first direction corresponding to an extensional direction of a cavity or a second direction, while a wire bonding portion is provided around a portion of an electrode layer corresponding to the vicinity of a region where the distance between the convex side of the warp of the semiconductor laser element in at least either the first direction or the second direction of the semiconductor laser element and the base is substantially the smallest.
Abstract:
In a semiconductor laser device, a semiconductor laser element is so fixed to a base that a distance between a convex side of a warp of the semiconductor laser element and the base varies with the warp of the semiconductor laser element along a first direction corresponding to an extensional direction of a cavity while a wire bonding portion is provided around a portion of an electrode layer corresponding to the vicinity of a region where the distance is the largest.
Abstract:
An optical resonator including a lower multilayer reflector and an upper multilayer reflector is arranged on a substrate. A strained active layer having a multiple quantum well structure formed with a quantum well layer and a barrier layer is arranged in the resonator. A current confinement layer including a selectively oxidized portion is arranged on an upper side of the strained active layer. The current confinement layer is arranged at a position where a strain in the selectively oxidized portion influences the strained active layer.
Abstract:
Methods and systems produce flattening layers associated with nitrogen-containing quantum wells and prevent 3-D growth of nitrogen containing layers using high As fluxes. MEE (Migration Enhanced Epitaxy) is used to flatten layers and enhance smoothness of quantum well interfaces and to achieve narrowing of the spectrum of light emitted from nitrogen containing quantum wells. MEE is performed by alternately depositing single atomic layers of group III and V before, and/or after, and/or in-between quantum wells. Where GaAs is used, the process can be accomplished by alternately opening and closing Ga and As shutters in an MBE system, while preventing both from being open at the same time. Where nitrogen is used, the system incorporates a mechanical means of preventing nitrogen from entering the MBE processing chamber, such as a gate valve.
Abstract:
The semiconductor laser of this invention includes an active layer formed in a c-axis direction, wherein the active layer is made of a hexagonal-system compound semiconductor, and anisotropic strain is generated in a c plane of the active layer.