Abstract:
In a high frequency power amplifier circuit that supplies a bias to an amplifying FET by a current mirror method, scattering of a threshold voltage Vth due to the scattering of the channel impurity concentration of the FET, and a shift of a bias point caused by the scattering of the threshold voltage Vth and a channel length modulation coefficient λ due to a short channel effect are corrected automatically. The scattering of a high frequency power amplifying characteristic can be reduced as a result.
Abstract:
In a high frequency power amplifier circuit that supplies a bias to an amplifying FET by a current mirror method, scattering of a threshold voltage Vth due to the scattering of the channel impurity concentration of the FET, and a shift of a bias point caused by the scattering of the threshold voltage Vth and a channel length modulation coefficient λ due to a short channel effect are corrected automatically. The scattering of a high frequency power amplifying characteristic can be reduced as a result.
Abstract:
A high efficiency radio frequency (RF) power amplifier having dynamically controlled back off is disclosed. The RF input voltage is sampled by an adaptive analog signal processing circuit. The adaptive analog signal processing circuit controls the supply voltage to RF amplifier devices, such as LDMOS devices, which varies the efficiency or back off of the power amplifier. The variable supply voltage in turn varies peak power of the amplifier.
Abstract:
The disclosure relates to a radio frequency (RF) and/or microwave power amplification device which is intended, for example, for a radio communication terminal, comprising means for shielding the device and means for controlling the power delivered as output from said device, said power-control means comprising a power servo loop having power-amplification means, reference means, detection means and comparison means. The aforementioned control means also comprise at least one sensor to detect the energy radiated inside the device.
Abstract:
A power source circuit for a high frequency power amplifying circuit, that can be used for a portable telephone of the GSM or WCDMA and a portable telephone capable of performing communications in two or more communication systems such as the GSM and CDMA. The power source circuit is constructed by a first direct current power source circuit such as a series regulator whose power efficiency is not high but which reaches a high level quickly, and a second direct current power source circuit such as a switching regulator, which does not reach the high level quickly but whose power efficiency is high. When the power source voltage has to reach the high level at high speed, both of the series regulator and the switching regulator are simultaneously operated. When the output power source voltage reaches a predetermined level, the operation of the series regulator is stopped.
Abstract:
The present invention provides an amplifying apparatus including, two amplifiers for receiving input signals in common and for outputting their respective amplified signals, a combiner for combining the output signals of the two amplifiers and for outputting a combined signal, the amplifying apparatus which inhibit the distortion component in the output of amplifiers in the transition state. This amplifying apparatus comprises, a predistortion unit for determining a distortion compensation component based on the output of the combiner and for predistorting the input based on the determined distortion compensation component, and a gain control unit for attenuating the inputs to set lower than in the steady state by reducing the gain in the transition from two amplifier operation to one amplifier operation, or in the transition from one amplifier operation to two amplifier operation, or at the time of removal or attachment the amplifiers.
Abstract:
Wireless output chip with a power detector and related manufacturing method. A BiCMOS process is used to integrate a power amplifier and a power detector, which detects power outputted by the power amplifier, into one chip. The power amplifier including bipolar junction transistors is formed by using BJT forming procedures in the BiCMOS process. The power detector includes a charging unit of a capacitor, a controlled current source and a reference current source constructed by metal-oxide-semiconductor transistors formed by MOS forming procedures in the BiCMOS process. Thus, the power detector and the power amplifier can be integrated into one chip using the low-cost BiCMOS process.
Abstract:
The invention realizes a power source circuit for a high frequency power amplifying circuit, which achieves excellent responsiveness of output voltage, can be used for a portable telephone of the GSM or WCDMA and a portable telephone capable of performing communications in two or more communication systems such as the GSM and CDMA and, moreover, has high power efficiency. A power source circuit for a high frequency power amplifying circuit is constructed by using both a first direct current power source circuit such as a series regulator whose power efficiency is not high but which becomes the high level quickly, and a second direct current power source circuit such as a switching regulator, which does not become the high level quickly but whose power efficiency is high. When the power source voltage has to become the high level at high speed, both of the series regulator and the switching regulator are simultaneously operated. When the output power source voltage reaches a predetermined level, the operation of the series regulator is stopped.
Abstract:
A power control loop for a power amplifier is disclosed. Embodiments of the power control loop include deriving a secondary control signal. The secondary control signal may be used to control a gain applied to the power signal in the power control loop and to control a supply current or voltage delivered to a power amplifier.
Abstract:
A low noise amplifier circuit (10) includes an attenuator (12) for receiving a calibration signal and generating an attenuated calibration signal. A low noise amplifier (14) amplifies the attenuated calibration signal in calibration mode or amplifies a functional signal in functional mode. In calibration mode, a envelope detector/comparator (16) compares the calibration signal with the output of the low noise amplifier and generates a compensation signal indicating a deviation between the two signals. The gain of the low noise amplifier is adjusted responsive to the compensation signal.