Abstract:
The present invention intends to provide a crosslinkable molded article and a crosslinked molded article free from molding failures, wherein their coefficient of thermal expansion is sufficiently low, their dimensional accuracy is high and a polymerizable composition is sufficiently filled in a fibrous material; a process for producing the same; and a use of such molded articles.A process for producing the molded articles of the present invention is characterized by producing a crosslinkable molded article by performing ring-opening bulk polymerization of a polymerizable composition comprising a cycloolefin monomer, a metathesis catalyst and, in accordance with need, a crosslinking agent and/or a filler in the presence of a glass yarn cloth having a bulk density of 0.50 to 1.10 g/cm3 and, then, if desired, conducting a crosslinking reaction.
Abstract translation:本发明提供一种交联性成型品和没有成型故障的交联成型品,其热膨胀系数足够低,尺寸精度高,可聚合组合物充分填充在纤维材料中; 其制造方法; 以及这种模塑制品的用途。 本发明的成型体的制造方法的特征在于,通过进行包含环烯烃单体,复分解催化剂的聚合性组合物的开环本体聚合,根据需要制造交联性成型体和/ 或填料,在堆积密度为0.50〜1.10g / cm 3的玻璃纱布的存在下,然后,如果需要,进行交联反应。
Abstract:
A resin for thermal imprint comprises a cyclic-olefin-based thermoplastic resin that contains at least one of skeletons represented by the following chemical equation 1 or the following chemical equation 2 in a main chain. The glass transition temperature Tg (° C.) and the value ([M]) of MFR at 260 ° C. satisfy the following equation 1, and [M]>10. The thermal imprint characteristics (transferability, mold release characteristic, and the like) are superior and the productivity (throughput) is improved. Tg (° C.)
Abstract:
A circuit subassembly, comprising: a conductive layer, a dielectric layer formed from a thermosetting composition, wherein the thermosetting composition comprises, based on the total weight of the thermosetting composition a polybutadiene or polyisoprene resin, about 30 to about 70 percent by weight of a magnesium hydroxide having less than about 1000 ppm of ionic contaminants, and about 5 to about 15 percent by weight of a nitrogen-containing compound, wherein the nitrogen-containing compound comprises at least about 15 weight percent of nitrogen; and an adhesive layer disposed between and in intimate contact with the conductive layer and the dielectric layer, wherein the adhesive comprises a poly(arylene ether), wherein the circuit subassembly has a UL-94 rating of at least V-1.
Abstract:
The present invention relates to a prepreg, a composite film, and a laminated material for circuit used for thermosetting composite resin compositions and printed circuit boards, and particularly to a thermosetting composite resin composition mixed with COP (Cyclo Olefin Polymer) and thermally cross-linkable resin, wherein the COP having excellent electrical characteristics at a high frequency and thermally cross-linkable resin are blended to allow having a less dielectric constant and a less dielectric loss than those of the conventional composite resin composition, and inorganic fillers such as ceramic material, metal material, carbon black are added to allow having dielectric characteristics covering from a low dielectric constant to a high dielectric constant.
Abstract:
Disclosed are composite materials that can exhibit low transmission energy loss and can also be temperature resistant. The composites include reinforcement fibers held in a polymeric matrix. The polymeric matrix can include an amorphous polymer component. Also disclosed are methods of forming the composites. Methods can include forming amorphous thermoplastic polymer fibers, forming a fabric from the fibers, combining the fabric with reinforcement fibers, and molding the structure thus formed under heat and pressure such that the amorphous thermoplastic polymer flows and forms a polymeric matrix incorporating the reinforcement fibers. The composites can be molded from multi-layer structures that can include layers of differing materials, for instance layers formed of polyaramids, fiberglass, or carbon fiber wovens or nonwovens. The composites can advantageously be utilized in low loss dielectric applications, such as in forming circuit board substrates, radomes, antennas, and the like.
Abstract:
In accordance with the present invention, assemblies have been developed which are useful for a variety of applications, e.g., in RF applications where low electrical loss products are desirable, e.g., in cellular communications, RF antennas, satellite communications, radar, power amplifiers, high speed digital applications, laminate-based chip carriers, and the like. Invention assemblies comprise a combination of a first reinforced thermoplastic-containing layer and a first non-reinforced thermoplastic-containing layer, wherein the reinforced and non-reinforced thermoplastic-containing layers are capable of forming a bond (e.g., a cohesive or adhesive bond) therebetween, thereby providing performance properties (e.g., electrical performance and cladding bond strength) that are superior to the performance properties of either material alone. The reinforced thermoplastic-containing layer can include a porous substrate impregnated with a composition comprising: a first component (i.e., a low loss, low dielectric constant, hydrocarbyl thermoplastic), a second component (i.e., a component able to crosslink and produce a thermoset in the presence of the first component), and a free radical source. Also provided in accordance with the present invention are methods for preparing the above-described assemblies.
Abstract:
Disclosed are composites that can exhibit low transmission energy loss and can also be temperature resistant. The composites include reinforcement fibers held in a polymeric matrix. The reinforcement fibers can include an amorphous polymer component. The fibers can be woven or knit to form a fabric or can be included in a nonwoven fabric. The composites can include other fibers as well, such as fiberglass. The composites can be multi-layer structures and can include layers of other materials, for instance layers formed of polyaramids, fiberglass, or carbon fiber wovens or nonwovens. The composites can advantageously be utilized in low loss dielectric applications, such as in forming circuit board substrates.
Abstract:
Disclosed are composite laminates that can exhibit high strength and/or low dielectric loss and can also be lightweight. The laminates include layers formed of high modulus polyolefin fiber. The fibers can be woven or knit to form a fabric or can be included in a nonwoven fabric that can be one or more layers of the composite structures. The layers including the high modulus polyolefin fibers can include other fibers, such as fiberglass. The composites can also include layers of other materials, for instance layers formed of polyaramids, fiberglass, or carbon fiber wovens or nonwovens. The composites can advantageously be utilized in low loss dielectric applications, such as in forming circuit board substrates, or in applications beneficially combining strength with low weight, such as automobile and boat materials.
Abstract:
A prepreg having low dielectric constant, low dielectric loss, and high heat cycle resistance. The prepreg includes a sheet-like preform and a resin-impregnated, sheet-like, fiber-reinforced material thermal pressure adhered to the sheet-like preform. The sheet-like preform includes a graft copolymer (a) in which 15 to 40 parts by mass of an aromatic vinyl monomer are grafted to 60 to 85 parts by mass of a random or block copolymer comprising monomer units selected from nonpolar α-olefin monomers and nonpolar conjugated diene monomers. The resin-impregnated, sheet-like, fiber-reinforced material includes a sheet-like, fiber-reinforced material (b1) and a thermoplastic resin (b2) into which the sheet-like, fiber-reinforced material (b1) is impregnated. The thermoplastic resin (b2) is a random or block copolymer composed of 60 to 90 mass % of a monomer unit, which is selected from nonpolar α-olefin monomers and nonpolar conjugated diene monomers, and 10 to 40 mass % of an aromatic vinyl monomer unit.
Abstract:
This invention provides a multi-layer circuit board excellent in flame resistance, insulating property and adhesion and not generating detrimental substances when burnt, and a curable composition suitable for obtaining the multi-layer circuit board. The curable composition contains an insulating resin such as an alicyclic olefin polymer or an aromatic polyether polymer, a nitrogen-type curing agent such as 1,3-diallyl-5-glycidyl isocyanurate and a phosphorus-type flame retardant such as phosphoric acid ester amide, and is molded into a film by a solution casting method. The film so formed is laminated on an internal layer board and is cured to give the multi-layer circuit substrate.