Abstract:
A transparent conductor including a conductive layer coated on a substrate is described. More specifically, the conductive layer comprises a network of nanowires that may be embedded in a matrix. The conductive layer is optically clear, patternable and is suitable as a transparent electrode in visual display devices such as touch screens, liquid crystal displays, plasma display panels and the like.
Abstract:
One or more embodiments provide for a device that utilizes voltage switchable dielectric material having semi-conductive or conductive materials that have a relatively high aspect ratio for purpose of enhancing mechanical and electrical characteristics of the VSD material on the device.
Abstract:
One or more embodiments provide for a device that utilizes voltage switchable dielectric material having semi-conductive or conductive materials that have a relatively high aspect ratio for purpose of enhancing mechanical and electrical characteristics of the VSD material on the device.
Abstract:
In one embodiment the present invention provides for a method of forming HTC dendritic fillers 40 within a host resin matrix that comprises adding HTC seeds 42 to the host resin matrix. The HTC seeds have been surface functionalized to not substantially react with one another. The seeds then accumulate HTC building blocks 42, and the HTC building blocks have also been surface functionalized to not substantially react with one another. Then assembling the HTC building blocks with the HTC seeds to produce HTC dendritic fillers 40 within the host resin matrix.
Abstract:
This invention relates to a hybrid composite material substrate. The substrate includes a conductive layer, an insulating layer, and a dispersion material extending from the conductive layer into the insulating layer.
Abstract:
A method for the treatment of micro pores (24) within a mica paper (20) that includes obtaining a silane with a molecular weight of between approximately 15 and 300, and adding the silane to the mica paper (20). Then reacting the silane with the inner surface of the micro pores within the mica paper. After this, a resin is impregnated into the mica paper, and the resin binds to the inner surfaces of the micro pores (24) with the mica paper through the silane.
Abstract:
A disclosed bonded structure includes a first electric structure having a first electrode, a second electric structure having a second electrode, and a middle section for electrically and mechanically bonding the first electrode and the second electrode. The middle section consists of conductive adhesives, wherein fusion bonding of metal particles is provided to at least one of the first electrode and the second electrode. The metal particles are capable of fusion bonding at a temperature lower than a thermal hardening temperature of the conductive adhesives. The conductive adhesives contain conductive filler pieces that have a particle size at which fusion bonding does not take place at a temperature lower than the thermal hardening temperature of the conductive adhesives.
Abstract:
Compositions and methods for production of conductive paths can include a printable composition including a liquid carrier and a plurality of nanostructures. The plurality of nanostructures can have an aspect ratio of at least about 5:1 within the liquid carrier. Examples of nanostructures include nanobelts, nanoplates, nanodiscs, nanowires, nanorods, and mixtures of these materials. These printable compositions can be used to form a conductive path on a substrate. The printable composition can be applied to a substrate using any number of conventional printing techniques. Following application of the printable composition, at least a portion of the liquid carrier can be removed such that the nanostructures can be in sufficient contact to provide a conductive path. The nanostructures arranged in a conductive path can be sintered or used as a conductive material without sintering.
Abstract:
Coupling components to an underlying substrate using a composition of a polymer and magnetic material particles. Upon applying the composition between the component and the printed circuit board, the composition may be subjected to a magnetic field to align the magnetic material particles into a conductive path between the component and the underlying substrate. At the same time the polymer-based material may be cured or otherwise solidified to affix the conductive path formed by the magnetic material particles.
Abstract:
A circuit board or microelectronic device in which conductive signal lines are suspended or supported by filaments in air, rather than surrounded by a solid dielectric material. Dry air has a low relative permittivity and extremely low loss tangent compared with common dielectric substrates in which signal lines are currently embedded within circuit boards and microelectronic devices. The signal intensity attenuation for filament-suspended or filament-supported signal lines is much lower than signal lines embedded in solid dielectric materials, allowing for transmission of significantly higher frequency signals within filament-suspended and filament-supported signal lines.