Abstract:
Superabrasive tools and methods for the making thereof are disclosed and described. In one aspect, superabrasive particles are chemically bonded to a matrix support material according to a predetermined pattern by a braze alloy. The brazing alloy may be provided as a powder, thin sheet, or sheet of amorphous alloy. A template having a plurality of apertures arranged in a predetermined pattern may be used to place the superabrasive particles on a given substrate or matrix support material.
Abstract:
A method of forming a thermally stable cutting element that includes disposing at least a portion of a polycrystalline abrasive body containing a catalyzing material to be leached into a leaching agent; and subjecting the polycrystalline abrasive object to an elevated temperature and pressure is disclosed. Thermally stable cutting elements and systems and other methods for forming thermally stable cutting elements are also disclosed.
Abstract:
A method of making a polycrystalline diamond compact includes mixing a diamond particle feed with a binder to form a mixture, forming the mixture into a precompact, heating the pre-compact in a non-oxidizing atmosphere to substantially drive off the binder, oxidizing the pre-compact in an oxidizing atmosphere at a temperature and for a time sufficient to burn off non-diamond carbon without overoxidizing diamond, and sintering the pre-compact at high pressure and high temperature to form a polycrystalline diamond compact. The method may also include oxidizing the diamond particle feed prior to mixing with the binder.
Abstract:
A method of forming a polycrystalline diamond compact from_a substantially homogeneous suspension of nanodiamond particles and microdiamond particles is disclosed The method includes disposing a first functional group on a plurality of nanodiamond particles to form derivatized nanodiamond particles, and combining the derivatized nanodiamond particles with a plurality of microdiamond particles, metal solvent-catalyst particles and a solvent to form a substantially homogeneous suspension of these particles in the solvent. A method of making an article is also disclosed. The method includes forming a superabrasive polycrystalline diamond compact by combining: a plurality of derivatized nanodiamond particles, a plurality of derivatized microdiamond particles having an average particle size greater than that of the derivatized nanodiamond particles, and a metal solvent-catalyst.
Abstract:
Embodiments of the invention relate to polycrystalline diamond compacts (“PDC”) exhibiting enhanced diamond-to-diamond bonding. In an embodiment, PDC includes a sintered substantially single-phase polycrystalline diamond (“PCD”) body consisting essentially of bonded-together diamond grains exhibiting a morphology different than that of a PCD body formed by sintering diamond crystals. A substrate is bonded to the sintered substantially single-phase PCD body. Other embodiments are directed to methods of forming such PDCs, and various applications for such PDCs in rotary drill bits, bearing apparatuses, and wire-drawing dies.
Abstract:
Insert for electrical furnaces comprising an insulating shell and a coiled heater element, the heater element comprising element wire that consists of at least two sections that are interconnected via a bend of element wire in such a way that the bend and the sections mutually form a loop of element wire. A fastening member is fixedly anchored in the insulating shell and arranged in the area of the bend in such a way that the element wire in a section directly connected to the bend is prevented from expanding past the fastening member.
Abstract:
Polycrystalline compacts include smaller and larger hard grains that are interbonded to form a polycrystalline hard material. The larger grains may be at least about 150 times larger than the smaller grains. An interstitial material comprising one or more of a boride, a carbide, a nitride, a metal carbonate, a metal bicarbonate, and a non-catalytic metal may be disposed between the grains. The compacts may be used as cutting elements for earth-boring tools such as drill bits, and may be disposed on a substrate. Methods of making polycrystalline compacts include coating smaller hard particles with a coating material, mixing the smaller particles with larger hard particles, and sintering the mixture to form a polycrystalline hard material including interbonded smaller and larger grains. The sizes of the smaller and larger particles may be selected to cause the larger grains to be at least about 150 times larger than the smaller grains.
Abstract:
A method of making a dense diamond body comprises the steps of: forming a sintered polycrystalline diamond body with the use of a catalyst; forming voids in the body by removing at least some of the catalyst; and reducing the overall volume of voids by applying pressure and temperature to the body in a vessel substantially free of additional catalysts.
Abstract:
The present invention relates to a process for the production of carbon nanotubes by decomposition of hydrocarbons on a heterogeneous catalyst in a fluidized bed reactor, wherein the reactor can be operated batchwise or continuously, and in the case of continuous operation discharge can take place with sifting or without sifting.
Abstract:
The invention relates to a method for manufacture of diamond, the method including the steps of providing a first coating of solvent metal or solvent metal alloy on a diamond seed to create a coated diamond seed, situating the coated diamond seed adjacent a catalyst system comprising a solvent metal and/or a source of carbon, and subjecting the coated diamond seed and catalyst system to increased temperature wherein the melting point of the first coating is at least 20 deg C. below that of the catalyst system. The invention further relates to a compact comprising a plurality of diamond seeds wherein at least one seed includes a first coating comprising a solvent metal and/or solvent metal based alloy, the compact further comprising a catalyst system comprising a solvent metal and/or a source of carbon wherein the melting point of the first coating is at least 20 deg C. below that of the catalyst system.