Abstract:
A combustion furnace or reactor with a multi-stage fluidized bed system wherein upper and lower fluidized bed formation zones in which the fluidized beds of bed particles containing particles of lime stone are separated through a partition device. The partition device is provided with a plurality of exhaust gas distribution holes for distributing the exhaust gases produced in the lower fluidized bed into the upper fluidized bed and a plurality of nozzles through which issue the combustion air and/or recirculated exhaust gases into the upper fluidized bed. Combustion products such as NO.sub.x and SO.sub.x are desulfurized and denitrified respectively within the reactor by calcium compounds which absorb SO.sub.2 and act as catalysts for reducing NO.sub.x.
Abstract:
Chemical enzymatic conversions are conducted by contacting an aqueous solution of the substrate with a granular immobilized enzyme, the substrate solution being passed through several series-connected, separate fluidized beds of the granular enzyme, while the enzyme particles are passed from one fluidized bed to the next countercurrently and against the direction of flow of the substrate solution. Multi-compartment reactor columns are also disclosed.
Abstract:
Liquid and gas materials are reacted in the presence of a catalyst in a reactor of the dispersed bed type which comprises a plurality of superposed chambers through which the catalyst progressively drops, its rate of transfer from one chamber to another being controlled by injecting an auxiliary fluid into downcomers through which the catalyst is forced to pass.
Abstract:
A method of producing unsaturated nitriles by reaction of an unsaturated hydrocarbon with ammonia and oxygen in a reactor having a fluidized catalyst bed comprising a regeneration zone and a reaction zone, characterized by introducing between about 3 percent and about 90 percent of the total amount of ammonia supplied to the reaction to the regeneration zone together with oxygen and introducing the remainder of the ammonia to the reaction zone together with the hydrocarbon feed.
Abstract:
A fluid catalytic cracking apparatus wherein the reaction zone comprises one or more risers and a reaction vessel. A constant inventory of catalyst is maintained in a fluidized state in the reaction vessel and catalyst is continuously withdrawn from the reaction at a rate equal to the rate catalyst enters the reaction vessel. An improved catalyst check valve connecting the reaction vessel and stripping zone controls the catalyst inventory and catalyst withdrawal rate.