Abstract:
In an instrument used to measure x-rays of the kind in which a wire anode operates in a gaseous atmosphere in a sealed housing to detect x-rays, the instrument is rejuvenated by passing a heating current through the anode to raise its temperature for a period of between two and six hours to convert any impurities to a compound.
Abstract:
An ionization detector comprises a substrate having detector traces adjacent conductive grounded traces to minimize crosstalk and charge leakage between the detector traces and to reduce the effects of contamination and humidity.
Abstract:
In an invention detector having an array of detectors, grounding pads are positioned in the spaces between some detectors (data detectors) and other detectors (reference detectors). The grounding pads are kept at zero electric potential, i.e., grounded. The grounding serves to (1) drain away electrons and thereby prevent an unwanted accumulation of charge in the spaces, and (2) cause the electric field lines to be more perpendicular to the detectors in regions near the grounding pads.
Abstract:
An apparatus for detecting propogating energy in a defined space includes a medium disposed within the space which interacts with the incident propogating energy to produce secondary energy. An electrostatic field is impressed across the defined space for directing the secondary energy toward a planar detector located at one end of the space. Adjacent the detector is positioned a planar grid for preventing the secondary energy from being detected by the detector prior to passage through the grid. The grid comprises a three layer device having a middle layer formed of an electrically insulative sheet material of a relatively stiff structure. The other two layers comprise conductive layers on opposed surfaces of the first layer which are connected to an electric potential for creating a field across the grid structure and a further field between the grid structure and the detector for accelerating the secondary energy toward the detector in the area of the grid at a space between the grid and detector.
Abstract:
Disclosed is a dosimeter-radiation meter for measuring a dose flow of ionizing radiation including a Geiger-Mueller tube and data processing circuitry. The data processing circuitry comprises a circuit for shaping and amplifying the pulses delivered by the tube, circuits for storing digital representations of characteristic parameters associated with a particular Geiger-Mueller tube, a section circuit for applying either sensed pulses or the coded parameters to a calculation unit, a calculation unit for counting pulses and for correcting the pulse count according to the precoded stored parameters and a display unit for displaying the dose count or flow rate.
Abstract:
A radiation detector has a housing in which is sealed a gas to be ionized when X-rays are projected therein. A plurality of electrodes for detecting the X-rays are arranged in the housing, and the housing is curved with a fixed curvature along the arranged direction of the electrodes. A vessel portion of the housing is closed by a cover portion. A cut extending in the longitudinal direction of the housing is formed in one side wall of the vessel portion. The cut is closed by an X-ray window. A window member of the X-ray window is made of carbon fiber reinforced plastics. The window member is bonded to the inside face of the side wall of the vessel portion, and is pressed against the inside face by the pressure of the gas sealed in the housing. Thus, the window member and the vessel portion are fully hermetically sealed. Since the X-ray transmission factor of the carbon fiber reinforced plastics is high, even low-energy X-rays can be projected with high intensity between the electrodes.
Abstract:
The present invention relates to the manufacture of ionization detectors used in X-ray tomographic imaging. One form of the invention discusses a method of manufacturing an array of ionization detectors which reduces spurious electric currents in the detectors when the detector spacing is in the 1.5 mil range. Also discussed is a method of manufacture of a chamber for containing an ionizable gas such as xenon, and of sealing the detector array at its point of entry into the chamber in order to prevent the escape of xenon.
Abstract:
A dosimeter for measuring the intensity of high energy electron, photon, or other particle radiation has ion, electron, and radiation shields about at least respectively sensitive components of the dosimeter. The entire dosimeter, therefore, can be assembled as a unit and portably placed in the radiation to be measured. Ruggedness for this desirable partability is provided by the use in the dosimeter of a pancake ionization chamber which also eliminates the need to calibrate radiologically the dosimeter.
Abstract:
A combination portable ionization chamber and support for mounting and adjustably aligning the chamber to an X-ray cassette so that the ionization chamber is accurately positioned in line with a source of radiation and a body part or object being X-rayed wherein the support is suspended from the X-ray cassette and retains the ionization chamber in position abutting the rear surface of the X-ray cassette so that when sufficient radiation has been detected by the ionization chamber to insure an acceptable radiograph, power to the radiation source will be automatically terminated.
Abstract:
A radiation imaging device which has application in x-ray imaging. The device can be utilized in CAT scanners and other devices which require high sensitivity and low x-ray fluxes. The device utilizes cumulative multiplication of charge carriers on the anode plane and the collection of positive ion charges to image the radiation intensity on the cathode plane. Parallel and orthogonal cathode wire arrays are disclosed as well as a two-dimensional grid pattern for collecting the positive ions on the cathode.