Abstract:
A boring tool moves having a pitch orientation, a yaw orientation and a roll orientation and is steerable underground using the roll orientation. A maximum drill string curvature is established for steering. The boring tool is advanced over a path segment. An averaged roll characteristic is determined for movement of the boring tool along the path segment. A path segment pitch orientation is established based on at least one measured pitch orientation along the path segment. Using the maximum drill string curvature in combination with the averaged roll characteristic and the path segment pitch orientation, the yaw orientation is determined. The averaged roll characteristic is determined based on a series of incremental roll measurements that are spaced across the path segment. A set of coupled ordinary differential equations is used to characterize movement of the boring tool.
Abstract:
Tracking a boring tool is performed within an underground region using a locating signal. The boring tool is moved through the ground during a series of distance movements such that potential movement of the boring tool during any one of the distance movements is less than a maximum movement value. A current positional relationship is determined for a current one of the distance movements based on: a last-determined positional relationship established for an immediately preceding one of the distance movements, certain orientation parameters, the maximum movement value and the determined signal strength of the locating signal in the current positional relationship. Target coordinates are accepted and a target position, based on the target coordinates, is included as part of the current positional relationship. The position of the target is unconstrained with respect to system geometry. Steering command features are provided along with steering warnings.
Abstract:
Discriminating between a cable locating signal and a false cable locating signal is described. A reference signal, which contains a locating signal frequency impressed on it, is transmitted in a way which provides for detection of a phase shift between the locating signal and the false locating signal. Based on the phase shift, a receiver is used to distinguish the locating signal from the false locating signal.
Abstract:
A boring tool moves having a pitch orientation, a yaw orientation and a roll orientation and is steerable underground using the roll orientation. A maximum drill string curvature is established for steering. The boring tool is advanced over a path segment. An averaged roll characteristic is determined for movement of the boring tool along the path segment. A path segment pitch orientation is established based on at least one measured pitch orientation along the path segment. Using the maximum drill string curvature in combination with the averaged roll characteristic and the path segment pitch orientation, the yaw orientation is determined. The averaged roll characteristic is determined based on a series of incremental roll measurements that are spaced across the path segment. A set of coupled ordinary differential equations is used to characterize movement of the boring tool.
Abstract:
A system and method for locating a horizontal bore below a ground surface includes a transmitting source configured to radiate from the bore a dipole magnetic field aligned with the bore. A receiver is located remote from the transmitting source and has a first coil and a second coil. Each coil defines an axis, wherein the axes of the first coil and the second coil are orthogonal to each other. A measurement device is in communication with the coils and configured to measure the phase of signals induced on the coils by the magnetic field when the axis of the first coil is horizontally perpendicular to the axis of the magnetic field and the axis of the second coil is vertically perpendicular to the axis of the magnetic field. The measurement device is also configured to determine the lateral position of the transmitting source relative to the coils responsively to the phase of the signals on the first coil and the second coil.
Abstract:
A method is disclosed as part of an overall process in which a boring tool is moved through the ground within a given region along a particular path in an orientation which includes pitch. A locating signal is transmitted from the boring tool which signal exhibits a field defined forward point within a reference surface which field defined forward point is vertically above an inground forward point on the particular path through which the boring tool is likely to pass. The method establishes a predicted depth of the boring tool at the inground forward point by first identifying the field defined forward point. The signal strength of the locating signal is then measured at the field defined forward point as being representative of the depth of the boring tool at an inground upstream point which is the current location of the boring tool. With the boring tool at the upstream inground point, the pitch of the boring tool is determined. Using the measured signal strength and the determined pitch, the predicted depth of the boring tool is determined for the inground forward point based on the boring tool moving along an approximately straight path to the inground forward point.
Abstract:
A system includes a drill string made up of a plurality of connectable pipe sections. An assembly is provided for use with each pipe section including contact arrangement for forming an isolated electrical connection between attached pipe sections at each end of each pipe section. An electrically conductive arrangement is located in the innermost passage of each pipe section and is in electrical communication with the contact arrangement to extend therebetween in a way which provides an electrically conductive path that is arranged against the inner wall of the innermost passage of each pipe section in cooperation with the contact arrangement to form an overall electrically isolated conductive path through the drill string. The electrically conductive arrangement resiliently biases the electrically conductive path against the inner wall, which path may take the form of a helix.
Abstract:
A portable locator and method for establishing the location of the cable line in a region which includes at least one generally straight electrically conductive cable line extending across the region from which cable line a locating signal includes a first arrangement for measuring a local flux intensity of the locating signal at a first above ground point within the region with the portable locator in a particular orientation at the first above ground point. A second arrangement uses the local flux intensity to establish a cable line angular orientation which limits the possible directions to the cable line relative to the particular orientation of the portable locator at the above ground point. A third arrangement uses the measured local flux intensity to establish an actual direction of the cable line that is selected from the possible directions based on certain characteristics of the locating signal.
Abstract:
A drilling system performs underground boring using a drill rig and a boring tool which is configured for moving through the ground under control of the drill rig to form an underground bore. A monitoring arrangement, forming part of the system, includes a detection arrangement at the drill rig for monitoring at least one operational parameter to produce a data signal relating to at least one of a utility to be installed in the underground bore, the drill rig and the boring tool. A portable device forms another of the system for receiving the data signal relating to the operational parameter for use by the portable device. A communication arrangement, for example using telemetry, transfers the data signal from the drill rig to the portable device. The operational parameter may be monitored for the purpose of preventing equipment failure.
Abstract:
Tracking a boring tool is performed within an underground region using a locating signal. The boring tool is moved through the ground during a series of distance movements such that potential movement of the boring tool during any one of the distance movements is less than a maximum movement value. A current positional relationship is determined for a current one of the distance movements based on: a last-determined positional relationship established for an immediately preceding one of the distance movements, certain orientation parameters, the maximum movement value and the determined signal strength of the locating signal in the current positional relationship. Target coordinates are accepted and a target position, based on the target coordinates, is included as part of the current positional relationship. The position of the target is unconstrained with respect to system geometry. Steering command features are provided along with steering warnings.