Abstract:
An optical energy conversion apparatus 10 includes a first impurity doped semiconductor layer 5, formed on a substrate, and which is of a semiconductor material admixed with a first impurity, an optically active layer 6, formed on the first impurity doped semiconductor layer 5, and which is of a hydrogen-containing amorphous semiconductor material, and a second impurity doped semiconductor layer 7, admixed with a second impurity and formed on the optically active semiconductor layer 6. The second impurity doped semiconductor layer is of a polycrystallized semiconductor material lower in hydrogen concentration than the material of the optically active semiconductor layer 6. The average crystal grain size in the depth-wise direction in an interfacing structure between the optically active semiconductor layer 6 and the second impurity doped semiconductor layer 7 is decreased stepwise in a direction proceeding from the surface of the second impurity doped semiconductor layer towards the substrate 1. By controlling the hydrogen concentration of the second impurity doped semiconductor layer 7, the number of dangling bonds in the second impurity doped semiconductor layer 7 is significantly decreased to exhibit superior crystallinity to improve the conversion efficiency of the apparatus 10.
Abstract:
Disclosed are a method of producing a crystalline semiconductor material capable of improving the crystallinity and a method of fabricating a semiconductor device using the crystalline semiconductor material. An amorphous film is uniformly irradiated with a pulse laser beam (energy beam) emitted from an XeCl excimer laser by 150 times so as to heat the amorphous film at such a temperature as to partially melt crystal grains having the {100} orientations with respect to the vertical direction of a substrate and melt amorphous film or crystal grains having face orientations other than the {100} orientations. Silicon crystals having the {100} orientations newly occur between a silicon oxide film and liquid-phase silicon and are bonded to each other at random, to newly form crystal grains having the {100} orientations. Such a crystal grain creation step is repeated, to form a crystalline film which has crystal grains preferentially grown in the {100} orientations with respect to the vertical direction of the substrate and thereby has sharp square-shaped crystal grain boundaries.
Abstract:
A low concentration impurity diffusion region is formed with good controllability even in case of using a low heat resistant substrate. When doping a semiconductor layer, after forming the semiconductor layer on the substrate, the amount of the dopant ion adsorbed on a surface of the semiconductor layer is controlled by introducing hydrogen gas at the time of plasma irradiation and activating the adsorbed dopant ion in the semiconductor layer by an excimer laser.
Abstract:
A functional device and method of manufacturing the same are disclosed. A low-temperature softening layer and a heat-resistant layer are formed in this order on a substrate made of organic material such as polyethylene terephthalate, and a functional layer made of polysilicon is formed thereon. The functional layer is formed by crystallizing an amorphous silicon layer (precursor layer), with laser beam irradiation. When a laser beam is applied, heat causes the substrate to expand. However, stress caused by a difference in a thermal expansion coefficient between the substrate and the functional layer is absorbed by the low-temperature softening layer, so that no cracks and peeling occurs in the functional layer. The low-temperature softening layer is preferably made of a polymeric material containing acrylic resin. By properly interposing a metal layer and a heat-resistant layer between the substrate and the functional layer, a laser beam of higher intensity can be irradiated.
Abstract:
It is intended to provide a ferroelectric that exhibits superior ferroelectricity. A ferroelectric provided is an oxide having a layered crystal structure that is composed of Bi, a first element Me, a second element R, and O. The first element Me is at least one element selected from the group consisting of Na, K, Ca, Ba, Sr, Pb, and Bi. The second element R is at least one element selected from the group consisting of Fe, Ti, Nb, Ta, and W. Ninety-eight percent or more of the entire body of the ferroelectric exhibits ferroelectricity. After an oxide having a layered crystal structure has been grown by a vapor-phase method (crystal growth step), electrodes are attached to the oxide having a layered crystal structure and a voltage is applied thereto (voltage application step). As a result, strains of crystal lattices are corrected at least partially, whereby portions that did not exhibit ferroelectricity at all or did not exhibit superior ferroelectricity due to such large strains that the symmetry of crystal lattices is lost are changed so as to exhibit superior ferroelectricity.
Abstract:
Provided is a process for preparing a bismuth compound at a heat treatment temperature lower than conventional. A bismuth compound is prepared by the steps of heating under vacuum to form a reduced phase and heating under oxidizing environment of normal or lower pressure.
Abstract:
An embodiment of the invention provides a laser annealing method, including the steps of radiating a laser beam to an amorphous film on a substrate while scanning the laser beam for the amorphous film, crystallizing the amorphous film, detecting a light quantity of laser beam reflected from the substrate and a scanning speed of the laser beam while the radiation and the scanning of the laser beam are carried out for the amorphous film, and controlling a radiation level and the scanning speed of the laser beam based on results of comparison of the light quantity of laser beam reflected from the substrate, and the scanning speed of the laser beam with respective preset references.
Abstract:
A thin film semiconductor device is provided. The semiconductor device includes a semiconductor thin film configured to have an active region turned into a polycrystalline region through irradiation with an energy beam, and a gate electrode configured to be provided to traverse the active region. Successive crystal grain boundaries extend along the gate electrode in a channel part that is the active region overlapping with the gate electrode, and the crystal grain boundaries traverse the channel part and are provided cyclically in a channel length direction.
Abstract:
A piezoelectric transformer includes: a piezoelectric transducer on whose outer surface an electrode is formed; a case housing the piezoelectric transducer; a terminal disposed to face the electrode; an elastic member in contact with both the electrode and the terminal in the case and having conductivity to bring the electrode and the terminal into mutual continuity; and a folder formed in the case and fixedly holding the elastic member to press-fit the elastic member between the electrode and the terminal.
Abstract:
A display including a driving substrate is provided. Arrayed on the driving substrate is a plurality of pixel electrodes and thin film transistors for driving the pixel electrodes. Each thin film transistor includes a semiconductor thin film having an active region made to be polycrystalline by irradiation with an energy beam, and a gate electrode provided so as to cross the active region. In a channel part of the active region overlapping with the gate electrode, the crystal state is varied periodically along the channel length direction, and substantially the same crystal state crosses the channel part.