Abstract:
A method for production of an extruded, polystyrene-based foam plate wherein a polystyrene-based resin is heated and kneaded together with a blowing agent, a flame retardant and a nucleating agent in an extruder to obtain a foamable molten composition, and the foamable molten composition is extruded through a die attached to an end of the extruder into a lower pressure zone. The blowing agent comprises not smaller than 25% by weight but not greater than 65% by weight, based on the total weight of the blowing agent, of an isobutane-containing saturated hydrocarbon; not smaller than 5% by weight but not greater than 70% by weight, based on the total weight of the blowing agent, of a dimethyl ether-containing ether; not smaller than 5% by weight but not greater than 55% by weight, based on the total weight of the blowing agent, of carbon dioxide; and 0-25% by weight, based on the total weight of the blowing agent, of other blowing agent components.
Abstract:
A method for producing expanded polypropylene resin particles wherein polypropylene resin particles impregnated with a physical blowing agent are heated along with an aqueous medium and a dispersant and are released and expanded at reduced pressure from the interior of a pressure-tight vessel, wherein the aforementioned aqueous medium has an electrical conductivity of from not less than 0.00 ms/m to not more than 20.00 mS/m. The resulting particles obtained are without inconsistencies caused by differences in the amount of dispersant adhering to the particles or the amount of dispersant added to prevent the particles from fusing together during the heat treatment step of the method.
Abstract:
A polyethylene-based resin expanded bead including a non-crosslinked linear low-density polyethylene as a base resin. The density, heat of fusion, melting point, and melt flow rate measured under conditions of a temperature of 190° C. and a load of 2.16 kg of the linear low-density polyethylene fall within their respective predetermined ranges. The average cell diameter of the expanded beads is 50 μm or more and 180 μm or less.
Abstract:
A method for producing polypropylene-based resin expanded beads containing a post-consumer recycled material of a polypropylene-based resin foamed molded article containing carbon black in order to enable provision of a black expanded beads molded article excellent in appearance and physical properties using a post-consumer recycled material of a polypropylene-based resin foamed molded article containing carbon black. The method includes: a mixing step of melt-mixing a polypropylene-based resin at 230° C. under a load of 2.16 kg and a polypropylene-based resin recovered materials including of a recovered materials of a post-consumer recycled material of a polypropylene-based resin foamed molded article with an extruder to obtain a mixture; an extrusion step; and a foaming step, wherein in the mixture, the polypropylene-based resin recovered materials contains carbon black.
Abstract:
A polypropylene-based resin expanded bead, in which the melting point Tma of a polypropylene-based resin (a) constituting a core layer in an expanded state is 135° C. or higher and 155° C. or lower; a polypropylene-based resin (b) constituting a covering layer contains a propylene-based copolymer containing a propylene component, an ethylene component, and a butene component, as a main component; the difference [Tma−Tmb] between the melting point Tma of the polypropylene-based resin (a) and the melting point Tmb of the polypropylene-based resin (b) is 1° C. or more and 30° C. or less; the difference [Tmb−Tcb] between the melting point Tmb of the polypropylene-based resin (b) and the crystallization temperature Tcb of the polypropylene-based resin (b) is 40° C. or less; and the covering layer contains a higher fatty acid amide.
Abstract:
In a method for manufacturing a molded article of polypropylene-based resin expanded beads, expanded beads compressed by pressurized gas are filled in a mold, and then a heating medium is supplied into the mold to perform in-mold molding on the expanded beads in the mold. The expanded bead has a tubular shape with a through-hole. An average hole diameter d of the through-hole is 0.1 mm or more and less than 1 mm, and a ratio d/D of the average hole diameter d of the through-hole to an average outer diameter D of the expanded bead is 0.4 or less. A compression ratio P of the expanded beads in a state where the expanded beads are filled in the mold is 20% or more and 80% or less.
Abstract:
A polypropylene-based resin expanded bead having a tubular shape with a through-hole, containing a foamed core layer constituted by a polypropylene-based resin and a fusion-bonding layer covering the foamed core layer. An average hole diameter d of the through-hole in the expanded bead is less than 1 mm, and a ratio d/D of the average hole diameter d to an average outer diameter D of the expanded bead is 0.4 or less, a mass ratio of the foamed core layer and the fusion-bondable layer is foamed core layer:fusion-bondable layer=99.5:0.5 to 85:15, and the polypropylene-based resin constituting the foamed core layer has a flexural modulus of 800 MPa or more and less than 1200 MPa and a melting point Tmc of 150° C. or lower.
Abstract:
A method for producing polyamide-based resin multi-stage expanded beads includes an internal pressure applying step of placing polyamide-based resin expanded beads in a pressure-resistant container, impregnating the polyamide-based resin expanded beads with a physical blowing agent in the pressure-resistant container to apply internal pressure higher than atmospheric pressure; and a heating and foaming step of heating and expanding the polyamide-based resin expanded beads to which internal pressure is applied obtained in the internal pressure applying step to obtain polyamide-based resin multi-stage expanded beads having apparent density lower than that of polyamide-based resin expanded beads used in the internal pressure applying step, in the internal pressure applying step, polyamide-based resin expanded beads in a wet state having a water content of 1% or more being impregnated with the physical blowing agent at a temperature higher than change-point temperature of storage modulus of the polyamide-based resin expanded beads in a wet state.
Abstract:
A molded article of polyolefin-based resin expanded beads having excellent appearance and further suppressed color unevenness is provided. Polyolefin-based resin expanded beads obtained by expanding polyolefin-based resin particles including one or two or more metal borates selected from zinc borate and magnesium borate, wherein the particles of the metal borate has an arithmetic average particle diameter based on the number of 1 μm or more, and a number rate of the particles of the metal borate having a particle diameter of 5 μm or more is 20% or less. A method for producing polyolefin-based resin expanded beads by releasing expandable polyolefin-based resin particles containing one or two or more metal borates selected from zinc borate and magnesium borate and a physical blowing agent dispersed in an aqueous medium in a closed vessel together with the aqueous medium from the closed vessel to a low pressure region than an inside of the closed vessel to expand the expandable polyolefin-based resin particles, the method comprising: using a metal borate having an arithmetic average particle diameter based on the number of 1 μm or more and a number rate of the particles having a particle diameter of 5 μm or more of 20% or less as the metal borate.
Abstract:
The present invention relates to an expanded beads molded article containing a block copolymer of a polyethylene block and an ethylene-α-olefin copolymer block and having a density of 30 kg/m3 or more and less than 150 kg/m3 and a modulus of repulsion elasticity of 60% or more. The sole member of the present invention includes the expanded beads molded article of the present invention.