Abstract:
A built-in antenna apparatus for a Global Positioning System (GPS) of a portable terminal is provided. The apparatus includes a case frame for forming an exterior of the terminal, a main board fastened by the case frame and having a feeding portion and a ground portion of an antenna radiator, and an antenna radiator having a feeding point and ground point to be electrically connected to the feeding portion and ground portion of the main board, and is curved in a horizontal direction and a vertical direction of the terminal about a center of one upper-side corner of the terminal.
Abstract:
Provided are an electrical fuse, a semiconductor device having the same, and a method of programming and reading the electrical fuse. The electrical fuse includes first and second anodes disposed apart from each other. A cathode is interposed between the first and second anodes. A first fuse link couples the first anode to the cathode, and a second fuse link couples the second anode to the cathode.
Abstract:
Disclosed herein are organic memory devices and methods for fabricating such devices. The organic memory devices comprise a first electrode, a second electrode and an organic active layer extending between the first and second electrodes wherein the organic active layer is formed from one or more electrically conductive organic materials that contain heteroatoms and which are configured in such a manner as that the heteroatoms are available for linking or complexing metal atoms within the organic active layer. The metal ions may then be reduced to form metal filaments within the organic active layer to form a low resistance state and the metal filaments may, in turn, be oxidized to form a high resistance state and thereby function as memory devices.
Abstract:
Methods and compositions for male or female contraception are provided. The compositions include an effective amount of netrin-1 to reduce or inhibit sperm concentration in semen of males or to inhibit or reduce fusion of male gametes with female gametes in a female subject Still another embodiment provides a method for diagnosing male infertility by determining the amount of netrin-1 in a sample of epididymal fluid or semen from a male subject, comparing the amount of netting-1 in the sample to levels of netrin-1 in samples of epididymal fluid or semen from fertile males, wherein levels of netrin-1 in the sample from the male subject that are higher or lower than levels of netrin-1 in samples from fertile males are indicative of male infertility in the male subject.
Abstract:
A mask for LITI and a LITI method using the same wherein the mask includes patterns arranged in a direction perpendicular to a beam scanning direction and are arranged so that increasingly longer patterns are located towards the edge of the mask than in or near the center.
Abstract:
An apparatus is configured to allocate an IDentification (ID) cell to avoid duplication of a preamble Pseudo Noise (PN) code in a broadband wireless communication system. The apparatus selects one sector inside the system. A temporary ID cell for the selected sector is selected. Whether an ID cell of a sector to which an ID cell has been already allocated inside a minimum unit group for ID cell allocation is the same as the temporary ID cell is determined. Whether PN codes of sectors inside a neighbor list of the selected sector are the same as temporary PN codes determined using the temporary ID cell are determined. When the temporary ID cell is not duplicated and the temporary PN codes are not duplicated, the selected temporary ID cell is allocated as an ID cell of the selected sector.
Abstract:
In a laser irradiation device, a patterning method and a method of fabricating an Organic Light Emitting Display (OLED) using the same. The laser irradiation device includes a light source, a mask, a projection lens, and a Fresnel lens formed at a predetermined portion of the mask to change an optical path. When an organic layer pattern is formed using the laser irradiation device, laser radiation is irradiated onto a region of an organic layer, which is to be cut, and the laser radiation is appropriately irradiated onto a region of the organic layer, which is to be separated from a donor substrate. The laser radiation irradiated onto an edge of the organic layer pattern has a laser energy density greater than that of the laser radiation irradiated onto other portions of the organic layer pattern. As a result, it is possible to form a uniform organic layer pattern and reduce damage of the organic layer.
Abstract:
A display panel includes: a first substrate including a gate line and a data line crossing the gate line, a pixel portion formed in a display region and electrically connected to the gate and the data line and a gate driving part formed on a first peripheral region and electrically connected to the gate line; a second substrate having a light blocking layer formed on an area of the second substrate corresponding to the first peripheral region; and a seal line formed between the first substrate and the second substrate to confine a liquid crystal layer therebetween, the seal line being formed in an area outside an outer peripheral edge of the display region, the area outside the outer peripheral edge of the display region being closer to an outer peripheral edge of the light blocking layer than to the outer peripheral edge of the display region.
Abstract:
A gate structure using nanodots as a trap site, a semiconductor device having the gate structure and methods of fabricating the same are provided. The gate structure may include a tunneling layer, a plurality of nanodots on the tunneling layer, and a control insulating layer including a high-k dielectric layer on the tunneling layer and the nanodots. A semiconductor memory device may further include a semiconductor substrate, the gate structure according to example embodiments on the semiconductor substrate and a first impurity region and a second impurity region in the semiconductor substrate, wherein the gate structure is in contact with the first and second impurity regions.
Abstract:
A laser induced thermal imaging apparatus and a laser induced thermal imaging method. A laser induced thermal imaging apparatus has electromagnets in an adhesion frame and a substrate stage to closely adhere a donor film to a substrate. The laser induced thermal imaging apparatus includes a process chamber including a donor film and a substrate, and adapted to carry out a process for depositing the donor film on the substrate; a substrate stage having a first electromagnet, and positioned in the process chamber to support the substrate; an adhesion frame having a second electromagnet, and positioned over the substrate stage, wherein the donor film and the substrate are disposed between the substrate stage and the adhesion frame in the process chamber; and a laser oscillator adapted to apply a laser output to the donor film.