Abstract:
There is described an intaglio printing press comprising a plate cylinder (8) carrying one or more intaglio printing plates (8c) and an impression cylinder (7) cooperating with the plate cylinder (8), a printing nip being formed between the plate cylinder (8) and the impression cylinder (7). The plate cylinder (8) and the impression cylinder (7) each comprise one or more cylinder pits (8a, 7a) and a corresponding number of cylinder segments (8b, 7b), the plate cylinder (8) and the impression cylinder (7) being in rolling contact with one another during printing operations along their respective cylinder segments (8a, 7b) when no cylinder pits (8a, 7a) are present at the printing nip. The intaglio printing press further comprises a monitoring system (150) designed to monitor a rolling condition of the impression cylinder (7) with respect to the plate cylinder (8) and to provide an indication as to whether or not the rolling condition corresponds to a desired rolling condition, the desired rolling condition being a rolling condition corresponding to true rolling of the impression cylinder (7) with respect to the plate cylinder (8) where no slippage occurs between a circumferential surface of the impression cylinder (7) and a circumferential surface of the plate cylinder (8). Also described is a method of monitoring operation of an intaglio printing press.
Abstract:
There is described an inspection system (10) for inspecting the quality of printed sheets which are transported by a sheet conveyor system comprising at least one sheet gripper system (3a, 3b) including a plurality of spaced-apart gripper bars (32) for holding the printed sheets by a leading edge thereof. The inspection system (10) comprises an optical quality control apparatus for carrying out inspection of a first side of the printed sheets while the printed sheets are being transported by the sheet gripper system (3b). The optical quality control apparatus includes a line camera (11) for scanning the first side of the printed sheets at an inspection location which is situated at a location proximate to a portion of the sheet gripper system (3b) where the gripper bars (32) transporting the printed sheets undergo a change of direction of displacement while the printed sheets are still being scanned by the line camera (11). The inspection system (10) further comprises a suction roller (50) that is placed in front of the optical path (B) of the line camera (11) along the path (A) of the printed sheets being transported by the sheet gripper system (3b), which suction roller (50) contacts a second side of the printed sheets opposite to the first side which is being scanned by the line camera (11), the suction roller (50) being driven at a selected circumferential speed to drive successive portions of the printed sheets being inspected by the quality control apparatus at a determined and controlled speed past the line camera (11).
Abstract:
There is described a printing press (1; 1*; 1**) comprising an ink-receiving cylinder (9; 8) receiving ink from an inking system (90-93, 90*, 93*; 95-99, 95*, 99*; 100-104, 100*, 104*) having a plurality of ink-applying cylinders or rollers (93, 93*; 99, 99*; 104, 104*) arranged one above the other around part of a circumference of the ink-receiving cylinder (9; 8), the ink-applying cylinders or rollers (93, 93*; 99, 99*; 104, 104*) being inked by a corresponding plurality of inking devices (90, 90*; 95, 95*; 100, 100*), the printing press (1; 1*; 1**) further comprising an inking carriage (52; 55; 57) supporting the plurality of inking devices (90, 90*; 95, 95*; 100, 100*), which inking carriage (52; 55; 57) can be moved with respect to the ink-receiving cylinder (9; 8) between a working position and a retracted position. The at least one selected inking device (90*; 95*; 100*) amongst the plurality of inking devices (90, 90*; 95, 95*; 100, 100*) of the inking system (90-93, 90*, 93*; 95-99, 95*, 99*; 100-104, 100*, 104*) is supported onto the inking carriage (52; 55; 57) via a movable frame (60; 65; 70), which movable frame (60; 65; 70) is supported by the inking carriage (52; 55; 57) to allow movement of the selected inking device (90*; 95*; 100*) with respect to the inking carriage (52; 55; 57) and with respect to a remaining part (90; 95; 100) of the plurality of inking devices (90, 90*; 95, 95*; 100, 100*).
Abstract:
There is described a method of checking producibility of a composite security design of a security document, in particular of a composite banknote design, on a line of production equipment, the composite security design being the product of a combination of multiple sets of design features that are to be provided on a substrate as a result of a plurality of successive production operations carried out by means of the line of production equipment. The method comprises the steps of (a) providing digital design data representative of the composite security design of the security document, (b) modelizing, in a computer environment, the line of production equipment by means of which the composite security design is intended to be produced, (c) performing a computer simulation of production results of the plurality of successive production operations on the basis of the digital design data and the modelized line of production equipment, and (d) evaluating the computer simulated production results and determining, on the basis of these computer simulated production results, whether the composite security design can be produced on the line of production equipment.
Abstract:
There is described an intaglio printing press (1; 1*) comprising an intaglio cylinder (8) and an ink wiping system (10) with a rotating wiping roller assembly (11) contacting a circumference of the intaglio cylinder (8) for wiping excess ink from the surface of the intaglio cylinder (8), a rotational speed of the wiping cylinder being adjustable with respect to a rotational speed of the intaglio cylinder (8). The intaglio printing press (1; 1*) comprises an adjustable drive unit (25), which adjustable drive unit (25) is interposed between the wiping roller assembly (11) acting as a rotating output body of the adjustable drive unit (25) and a driving gear (100) coupled to the intaglio cylinder (8) and acting as a rotating input body of the adjustable drive unit (25). The adjustable drive unit (25) is designed to allow selected adjustment of a rotational speed of the wiping roller assembly (11) with respect to a rotational speed of the driving gear (100). In an adjusting state of the adjustable drive unit (25), driving into rotation of the wiping roller assembly (11) is adjusted by means of an adjustment motor (700) of the adjustable drive unit (25). In a non-adjusting state of the adjustable drive unit (25), the adjustment motor (700) is inoperative and driving into rotation of the wiping roller assembly (11) is performed exclusively mechanically via the adjustable drive unit (25), the wiping roller assembly (11) rotating at a defined rotational speed with respect to the rotational speed of the intaglio cylinder (8).
Abstract:
A sheet-processing machine comprises a plurality of modules which are passed through one after the other by the sheets to be processed. The modules each have a sheet input interface and/or a sheet output interface, wherein, in at least one of the modules, the sheet input interface and/or the sheet output interface can optionally be coupled to sheet output interfaces and sheet input interfaces, respectively, of at least two other modules.
Abstract:
There is described a method of creating a transparent polymer window (W) with a field of lenses (L) in a security paper substrate (1), the method comprising the steps of (i) providing a security paper substrate (1), (ii) forming an opening (10) into the security paper substrate (1), (iii) laminating a transparent film (5; 5*) onto a first side (I) of the security paper substrate (1) in such a way as to close the opening (10) at one end, and (iv) filling the opening (10) with transparent polymer material (2). In one embodiment, the transparent film (5) comprises a field of lenses (L) and is laminated onto the first side (I) of the security paper substrate (1) in such a way as to form lenses (L) on the first side (I) of the security paper substrate (1) in register with the opening (10). In another embodiment, the field of lenses (L) is replicated into the transparent polymer material (2) applied in the opening (10) in such a way as to form lenses (L) on a second side (II) of the security paper substrate (1), opposite to the first side (I), in register with the opening (10). Also described is a device designed to fill the opening (10) formed into the security paper substrate (1) with the transparent polymer material (2) and a processing machine comprising the same.
Abstract:
There are described various embodiments of an inking system for inking an intaglio printing cylinder (8) of an intaglio printing press (1I; 1II; 1III ; 1IV; 1V), which intaglio printing cylinder carries one or more intaglio printing mediums (8a, 8b, 8c) that are inked by means of a plurality of inking devices (95; 95*; 95**; 905; 905*). The inking system is designed to perform a selective transfer of ink to the one or more intaglio printing mediums by means of a selective inking cylinder (98; 98*; 98**) provided in at least one of the inking devices, preferably in each of the inking devices. More precisely, the selective inking cylinder carries a selective inking plate (90a) receiving ink supplied by an associated inking unit (96/96a/97; 96*/96a*/97*; 96**/96a**; 906/906a/910/915; 906*/906a*/910*/915*), which selective inking plate comprises a coating (900) that is selectively structured to exhibit ink-repellent portions (910) and perform selective transfer of ink at locations (920) corresponding to engraved areas of the one or more intaglio printing mediums that are to be inked with the ink supplied by the associated inking unit. The selective transfer of ink to the one or more intaglio printing mediums is performed indirectly from the selective inking cylinder to the one or more intaglio printing mediums via an ink collecting cylinder (9) and/or via a chablon cylinder (99*; 99**) carrying a chablon plate (99a) comprising relief portions (99A) corresponding to engraved areas of the one or more intaglio printing mediums that are to be inked with the ink supplied by the associated inking unit.
Abstract:
There is described a process of measuring print-to-print register of a multicolour print (A-D) provided in an effective printed area (EPA) of the surface of printed material, which multicolour print (A-D) is formed on the printed material by means of one or more printing presses and includes at least a first pattern (A) and a second pattern (B) distinguishable from the first pattern (A), the effective printed area (EPA) being provided with a matrix arrangement of individual imprints (P) which are each provided with the multicolour print (A-D) and are repeated over the surface of the effective printed area (EPA) along a pattern of rows and columns. Measurement of an actual print-to-print register between the first and second patterns (A, B), as reflected on the printed material, is derived from processing and finding a correspondence between (i) at least one sample image (SIA, SIB) of the printed material covering at least a portion of the first and second patterns (A, B), and (ii) at least one corresponding reference image (RIA, RIB) generated using prepress design data of the first and second patterns (A, B). Furthermore, the process is repeated for multiple ones of the individual imprints (P) so as to derive a set of multiple measurements of the actual print-to-print register between the first and second patterns (A, B) at various imprint locations over the effective printed area (EPA), which set of multiple measurements is mapped into a corresponding print-to-print register map (MB-A, MC-A, MD-A, . . . ) that is representative of print-to-print register deviations at the various imprint locations. Also described is a measuring device for carrying out this process and a process of measuring and correcting print-to-print register of a multicolour print.
Abstract:
There is described a process of measuring print-to-print register of a multicolour print (A-D) provided in an effective printed area (EPA) of the surface of printed material, which multicolour print (A-D) is formed on the printed material by means of one or more printing presses and includes at least a first pattern (A) and a second pattern (B) distinguishable from the first pattern (A), the effective printed area (EPA) being provided with a matrix arrangement of individual imprints (P) which are each provided with the multicolour print (A-D) and are repeated over the surface of the effective printed area (EPA) along a pattern of rows and columns. Measurement of an actual print-to-print register between the first and second patterns (A, B), as reflected on the printed material, is derived from processing and finding a correspondence between (i) at least one sample image (SIA, SIB) of the printed material covering at least a portion of the first and second patterns (A, B), and (ii) at least one corresponding reference image (RIA, RIB) generated using prepress design data of the first and second patterns (A, B). Furthermore, the process is repeated for multiple ones of the individual imprints (P) so as to derive a set of multiple measurements of the actual print-to-print register between the first and second patterns (A, B) at various imprint locations over the effective printed area (EPA), which set of multiple measurements is mapped into a corresponding print-to-print register map (MB-A, MC-A, MD-A, . . . ) that is representative of print-to-print register deviations at the various imprint locations. Also described is a measuring device for carrying out this process and a process of measuring and correcting print-to-print register of a multicolour print.